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A CHARACTERIZATION OF STONE AND LINEAR
HEYTING ALGEBRAS

ALEJANDRO PETROVICH AND CARLOS SCIRICA

Abstract. An important problem in the variety of Heyting algebras H is to
find new characterizations which allow us to determinate if a given H ∈ H is
linear or Stone. In this work we present two Heyting algebras, Hns and Hsnl,
such that: (a) a Heyting algebra H is a Stone–Heyting algebra if and only if
Hns cannot be embedded in H, and (b) H is a linear Heyting algebra if and
only if neither Hns nor Hsnl can be embedded in H.

1. Introduction

It is well known that Heyting algebras are the algebraic models of intuitionis-
tic logic. On the other hand there are different subvarieties of Heyting algebras
which are the logical counterparts of certain intermediate logics. Two important
examples are the linear Heyting algebras and Stone–Heyting algebras. The first
one corresponds to the logic of Gödel and Dummett ([3], [4]) and were studied by
several authors (see, for instance, [6]). Stone algebras are pseudo-complemented
distributive lattices satisfying the so-called weak excluded middle, ¬a ∨ ¬¬a = 1.
These structures were introduced by Grätzer and Schmidt in [5]. An important
and useful tool in universal algebra is to determine, by means of certain embed-
dings, whether an algebra belongs to a given subvariety. A classical example is the
variety of lattices and the subvarieties of modular and distributive lattices. Indeed,
in this case the result establishes that a lattice L is modular if and only if N5
cannot be embedded in L, and L is distributive if and only if neither N5 nor M5
can be embedded in L [2]. In this paper we show such embedding results for the
varieties of linear Heyting algebras and Stone–Heyting algebras. The main results
are established in Theorems 3.3 and 4.4 by showing that a Heyting algebra H is
a Stone algebra if an only if the Heyting algebra Hns, determined by the Boolean
algebra with four elements with a new one added, cannot be embedded in H, while
a Heyting algebra H is linear if and only if neither Hns nor Hsnl can be embedded
into H, where Hsnl is the Boolean algebra with four elements with a new one and
zero added. In order to obtain this last result we need to introduce a new class of
Heyting algebras called DL algebras. Finally we describe these results by means of
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the partially ordered set associated to the lattice of subvarieties of the variety of
Heyting algebras.

2. Preliminaries

The aim of this section is to establish some basic facts about Heyting algebras
which are needed in the paper. Recall that a Heyting algebra is a bounded distribu-
tive lattice (H,∨,∧, 0, 1) such that for every x, y ∈ H the set {z ∈ H : z ∧ x ≤ y}
has a last element, denoted by x → y. In particular, the Heyting negation of an
element x ∈ H, called also intuitionistic, is defined by ¬x = x → 0, which is the
greatest element z ∈ H such that x ∧ z = 0. Hence every Heyting algebra is a
pseudocomplemented distributive lattice endowed with this negation. The class of
Heyting algebras determines a variety in the sense of universal algebra and hence is
an equational class in the language (∨,∧,→, 0, 1), given by the following equations
(see, for instance, [1]):

(H0) H is a bounded distributive lattice.
(H1) x ∧ (x→ y) = x ∧ y.
(H2) x ∧ (y → z) = x ∧ ((x ∧ y)→ (x ∧ z)).
(H3) (x ∧ y)→ x = 1.

We shall denote by H the variety of Heyting algebras.
Let H be a Heyting algebra and let z ∈ H. Recall that z is called a dense

element provided that ¬z = 0. It is immediate to see that z is dense if and only if
there is x ∈ H such that z = x ∨ ¬x. We shall denote by D(H) the set of dense
elements of H. Since ¬(x ∧ y) = x→ ¬y, it follows that D(H) is a filter of H.

Lemma 2.1. Let H be a Heyting algebra. Then the following conditions are sat-
isfied:

(i) If x ∈ D(H) and y ∈ H then x→ ¬y = ¬y.
(ii) If x, y ∈ H then (x→ y)→ (y → x) = (y → x).

Proof. To prove (i), let x be a dense element of H. It is plain that x ∧ ¬y ≤ ¬y.
Take z ∈ H such that x∧z ≤ ¬y. Then x∧z∧y = 0. Since x ∈ D(H) it follows that
z∧y = 0 and hence z ≤ ¬y. To prove (ii), let x, y be elements in H. We first prove
that (x→ y)∧ (y → x) ≤ (y → x). Indeed, this inequality is equivalent to proving
that (x→ y)∧(y → x)∧y ≤ x. Since (x→ y)∧(y → x)∧y = y∧(y → x) = y∧x ≤ x
the results follows. Next we take z ∈ H such that (x → y) ∧ z ≤ (y → x). It
follows that (x → y) ∧ z ∧ y = z ∧ y ≤ x and hence z ≤ (y → x). Therefore
(x→ y)→ (y → x) = (y → x). �

Recall that an algebra A is subdirectly irreducible if for every subdirect embed-
ding f : A →

∏
i∈I Ai there is i ∈ I such that πi ◦ f : A → Ai is an isomorphism,

where πi denotes the canonical projection from
∏

i∈I Ai onto Ai. The following
characterization of subdirectly irreducible Heyting algebras is well known and will
be useful through this paper.
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Proposition 2.2 ([2, p. 66, Exercise 9]). Let H be a Heyting algebra. Then H
is a subdirectly irreducible algebra if and only if there is a Heyting algebra H such
that H = H†1, where † denotes the ordinal sum, or equivalently, 1 ∈ H is join-
irreducible (if a ∨ b = 1 then either a = 1 or b = 1).

3. Stone–Heyting algebras

Recall that a a pseudo-complemented distributive lattice (L,∨,∧,¬, 0, 1) is called
a Stone algebra provided that ¬a∨¬¬a = 1 for all a ∈ L. A Stone–Heyting algebra
is a Heyting algebra H such that the underlying pseudo-complemented distributive
lattice is a Stone algebra. In this case the pseudocomplement ¬ coincides with the
intuitionistic negation defined in H.

The variety of Stone–Heyting algebras will be denoted by HS . It is worthwhile
to point out that although the variety of Stone algebras is generated by the chains
having either two or three elements, this is not true for the variety HS . Indeed we
have the following result.

Theorem 3.1. Let V (3) be the subvariety of H generated by the Heyting chain
with three elements. Then V (3) is characterized by the equation

(x ∨ ¬x) ∨ (y ∨ ¬y) ∨ [(x→ y) ∧ (y → x)] = 1. (∗)

Proof. It is clear that 3 satisfies the above equation. Therefore every algebra in
V (3) satisfies (∗). In order to complete the proof it is enough to see that if H
is a subdirectly irreducible algebra satisfying (∗) then H has three elements. By
Proposition 2.2 we know that H = H†1. Let 1 be the top element of H. It is enough
to prove that H = {0, 1, 1}. Indeed, take x ∈ H. Suppose that x 6∈ {0, 1, 1}. Let
y = 1. By taking into account that x 6= y and 1 is a join irreducible element of H
we infer from (∗) that either x ∨ ¬x = 1 or y ∨ ¬y = 1. Since the second equality
is impossible we infer that either x = 0 or x = 1, a contradiction. �

Note that a chain having more than three elements does not satisfy equation (∗)
in the above theorem. In particular, HS properly contains V (3), since every finite
chain belongs to HS .

Remark 3.2. The algebras belonging to the subvariety V (3) are called three-
valued Heyting algebras and were studied by L. Monteiro in [7]. It is shown in that
paper that this variety is characterized by the equation

((x→ z)→ y)→ (((y → x)→ y)→ y) = 1.

Note that this equation involves only the Heyting implication and depends on three
variables x, y, z, while the equation given in the previous theorem depends on two
variables x, y and all the operations associated to the language of Heyting algebras.

We denote by Hns the Heyting algebra determined by the ordinal sum B4†1,
where B4 is the Boolean algebra with four elements. The Hasse diagram of this
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Heyting algebra is given by the following picture:

1

c

OO

Hns : a

??

b

__

0

^^ @@

Theorem 3.3. Let H be a Heyting algebra. Then H is a Stone algebra if and only
if there does not exist an embedding J1 : Hns → H of Heyting algebras.

Proof. Assume first that H is a Stone algebra and assume on the contrary that
J1 : Hns → H is an embedding of Heyting algebras. It follows that the image of J1
is a subalgebra of H isomorphic to Hns. Since H is a Stone algebra this would
imply that Hns is also a Stone algebra, a contradiction. For the converse, assume
that H is not a Stone algebra. Then there is h ∈ H such that ¬h ∨ ¬¬h 6= 1. We
claim that the subalgebra generated by ¬h is {0,¬h,¬¬h, (¬h ∨ ¬¬h), 1}. Indeed,
since (¬h∨¬¬h) ∈ D(H) it follows from Lemma 2.1 (i) that (¬h∨¬¬h)→ ¬h = ¬h
and (¬h ∨¬¬h)→ ¬¬h = ¬¬h, while (¬h ∨¬¬h)→ 0 = 0. On the other hand, it
is immediate to see that the following identities hold in every Heyting algebra:

(a) ¬h→ 0 = ¬¬h,
(b) ¬¬h→ 0 = ¬h,
(c) ¬h→ ¬¬h = ¬¬h, and
(d) ¬¬h→ ¬h = ¬h,

which proves the claim. Since this subalgebra is isomorphic to Hns, we obtain a
contradiction. �

Proposition 3.4. Let H be a subdirectly irreducible Stone–Heyting algebra. Then
D(H) = H\{0}.

Proof. Let H be a subdirectly irreducible Stone–Heyting algebra and let x ∈ H
such that x 6= 0. Since H is a Stone algebra, we have ¬x ∨ ¬¬x = 1. By taking
into account that H is subdirectly irreducible, it follows from Proposition 2.2 that
either ¬x = 1 or ¬¬x = 1. If ¬x = 1, then x = 0, which is a contradiction. Thus
¬¬x = 1, and consequently ¬x = 0. �

4. Linear Heyting algebras

Recall that a Heyting algebra H is said to be a linear Heyting algebra provided
the following identity is satisfied:

(a→ b) ∨ (b→ a) = 1 (L)
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for all a, b ∈ H. We shall denote by HL the variety of linear Heyting algebras.
Every linear Heyting algebra is a Stone algebra; in particular, HS is a subvariety
of HL. Indeed, let H be an algebra in HL. Replacing b by ¬a in (L) we obtain
(a → ¬a) ∨ (¬a → a) = 1. Since a → ¬a = ¬a and ¬a → a = ¬¬a, we arrive
to the identity ¬a ∨ ¬¬a = 1, thus proving that H is a Stone algebra. Moreover,
HL is a proper subvariety of HS . Indeed, the Heyting algebra Hsnl, given by the
following Hasse diagram, belongs to HS and does not belong to HL.

1

c

OO

Hsnl : a

@@

b

^^

d

^^ @@

0

OO

Indeed, since every element h ∈ Hsnl\{0} is dense it follows that Hsnl is a Stone
algebra, while (a→ b)∨ (b→ a) = b∨ a = c 6= 1 implies that Hsnl does not belong
to HL.

Definition 4.1. Let H be a Heyting algebra. We say that H is a DL algebra
provided the dense elements of H satisfy equation (L), i.e., H satisfies the equation
((x ∨ ¬x)→ (y ∨ ¬y)) ∨ ((y ∨ ¬y)→ (x ∨ ¬x)) = 1.

The variety of DL algebras will be denoted by HD.
It is easy to see that HL is a proper subvariety of HD. Indeed, Hns ∈ HD and

Hns /∈ HL.

Theorem 4.2. Let H be a Heyting algebra. Then H ∈ HD if and only if there
does not exist an embedding J2 : Hsnl → H of Heyting algebras.

Proof. Assume first that H is a DL algebra. Since Hns is not a DL algebra, it
is plain that it cannot be isomorphic to any subalgebra of H and hence there is
no embedding from Hsnl into H. For the converse, assume on the contrary that
H /∈ HD. Then there are elements h1, h2 ∈ D(H) such that (h1 → h2) ∨ (h2 →
h1) 6= 1. Note that h1 and h2 are incomparable, which implies that h1 → h2 and
h2 → h1 are also incomparable. Since D(H) is a filter of H, it follows that h1 → h2,
h2 → h1, ((h1 → h2) ∨ (h2 → h1)) and ((h1 → h2) ∧ (h2 → h1)) are also in D(H).
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We define the following map:

j2 : Hsnl → H

a→ (h1 → h2)
b→ (h2 → h1)
c→ ((h1 → h2) ∨ (h2 → h1))
1→ 1
e→ (h1 → h2) ∧ (h2 → h1)
0→ 0.

j2 acts according to the following picture:

Hsnl

1

c

OO

a

<<

b

bb

e

bb <<

0

OO

→ H

1

(h1 → h2) ∨ (h2 → h1)

OO

h1 → h2

55

h2 → h1

ii

(h1 → h2) ∧ (h2 → h1)

ii 55

0

OO

because h1 → h2 and h2 → h1 are incomparable. It is clear that j2 is a lattice
embedding. Let x = h1 → h2 and y = h2 → h1. By Lemma 2.1 (ii) it follows
that x → y = y and y → x = x. Therefore (x ∨ y) → x = x, (x ∨ y) → y = y,
x → (x ∧ y) = y and y → (x ∧ y) = x, which implies that j2 is an embedding of
Heyting algebras and we arrive to a contradiction. �

Theorem 4.3. HL = HD ∩HS.

Proof. We know that HL ⊆ HD ∩HS . To prove the reverse inclusion it is enough
to show that every subdirectly irreducible algebra H in HD ∩ HS belongs to HL.
Let x, y be in H. If x = 0 or y = 0, then it is clear that (x → y) ∨ (y → x) = 1.
Assume that x 6= 0 and y 6= 0. Then according to Proposition 3.4, x and y are both
dense elements. Thus x = x ∨ ¬x and y = y ∨ ¬y. Since H ∈ HD, we conclude
that (x→ y) ∨ (y → x) = ((x ∨ ¬x)→ (y ∨ ¬y)) ∨ ((y ∨ ¬y)→ (x ∨ ¬x)) = 1. �
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Theorem 4.4. Let H ∈ H. Then H ∈ HL if and only if neither Hns nor Hsnl

can be embedded in H.

Proof. Assume first that H is a linear Heyting algebra. By taking into account that
both Hns and Hsnl are not in HL, it is plain that neither Hns nor Hsnl can be
isomorphic to any subalgebra of H. To prove the converse, suppose on the contrary
that H does not belong to HL. Hence, by Theorem 4.3, H /∈ HD or H /∈ HS . If
H /∈ HS it follows from Theorem 3.3 that there exists an embedding J1 : Hns → H
of Heyting algebras, in contradiction with our hypothesis. Analogously, if H /∈ HD

we can find, according to Theorem 4.2, an embedding J2 : Hsnl → H of Heyting
algebras, a contradiction. �

Theorems 3.3, 4.2 and 4.4 allow us to obtain another result which shows the
connection between these embedding results and the the partial order given in
the lattice L(H) of subvarieties of Heyting algebras. Given a class A of Heyting
algebras we shall denote by V(A) the subvariety of H generated by A.

Proposition 4.5.
(1) The subvariety V(HS ∪ {Hns}) is the unique successor of HS in L(H).
(2) The subvariety V(HD ∪ {Hsnl}) is the unique successor of HD in L(H).
(3) The subvariety HL has exactly two successors, which are V(HL ∪ {Hsnl})

and V(HL ∪ {Hns}).

Proof. (1) Let W be a subvariety of H that strictly contains HS and let H ∈
(W −HS). Since H is not a Stone–Heyting algebra, it follows from Theorem 3.3
that there exists an embedding J1 : Hns → H of Heyting algebras. Since Hns is
isomorphic to a subalgebra of H, we have that Hns ∈ W. Consequently V(HS ∪
{Hns}) ⊆ W.

(2) LetW be a subvariety of H that strictly contains HD and let H ∈ (W−HD).
Since H is not a DL algebra, it follows from Theorem 4.2 that there exists an
embedding J2 : Hsnl → H of Heyting algebras. Since Hsnl is isomorphic to a
subalgebra of H, we have that Hsnl ∈ W, thus proving the inclusion V(HD ∪
{Hsnl}) ⊆ W.

(3) We first claim that Hns /∈ V(HL ∪ {Hsnl}) and Hsnl /∈ V(HL ∪ {Hns}).
Indeed, otherwise we would have in the first case that Hns should be a Stone
algebra, while in the second case Hsnl should be a DL algebra, both of which yield
a contradiction. Therefore V(HL ∪ {Hsnl}) and V(HL ∪ {Hns}) are incomparable
subvarieties of H which strictly contain HL. Let W be a subvariety of H that
strictly contains HL and let H ∈ (W − HL). Since H is not a linear Heyting
algebra, it follows from Theorem 4.4 that either Hns is isomorphic to a subalgebra
of H or Hsnl is isomorphic to a subalgebra of H. In the first case we have Hns ∈ W
and consequently V(HL∪{Hns}) ⊆ W; in the second case, Hsnl ∈ W, which proves
that V(HL ∪ {Hsnl}) ⊆ W. �
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