A characterization of Stone and linear Heyting algebras

Authors

  • Alejandro Petrovich Departamento de Matem´atica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
  • Carlos Scirica Escuela de Ciencia y Tecnolog´ıa, Universidad Nacional de San Mart´ın

DOI:

https://doi.org/10.33044/revuma.2052

Abstract

An important problem in the variety of Heyting algebras $\mathcal{H}$ is to find new characterizations which allow us to determinate if a given $H\in \mathcal{H}$ is linear or Stone. In this work we present two Heyting algebras, $H^{ns}$ and $H^{snl}$, such that: (a) a Heyting algebra $H$ is a Stone–Heyting algebra if and only if $H^{ns}$ cannot be embedded in $H$, and (b) $H$ is a linear Heyting algebra if and only if neither $H^{ns}$ nor $H^{snl}$ can be embedded in $H$.

Downloads

Download data is not yet available.

References

R. Balbes and P. Dwinger, Distributive lattices, University of Missouri Press, Columbia, MO, 1974. MR 0373985.

S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Graduate Texts in Mathematics, 78, Springer-Verlag, New York, 1981. MR 0648287.

M. Dummett, A propositional calculus with denumerable matrix, J. Symbolic Logic 24 (1959), 97–106. MR 0123476.

K. Gödel, Zum intuitionistischen Aussagenkalkül, Anz. Akad. Wiss. Wien 69 (1932), 65–66.

G. Grätzer and E. T. Schmidt, On a problem of M. H. Stone, Acta Math. Acad. Sci. Hungar. 8 (1957), 455–460. MR 0092763.

A. Horn, Logic with truth values in a linearly ordered Heyting algebra, J. Symbolic Logic 34 (1969), 395–408. MR 0253876.

L. Monteiro, Les algèbres de Heyting et de Łukasiewicz trivalentes, Notre Dame J. Formal Logic 11 (1970), 453–466. MR 0286633.

Downloads

Published

2022-04-18

Issue

Section

Article