Positive periodic solutions of a discrete ratio-dependent predator-prey model with impulsive effects

Authors

  • Cosme Duque Universidad de Los Andes, Facultad de Ciencias, Departamento de Matem´aticas, Mérida, Venezuela
  • José L. Herrera Diestra Universidad de Los Andes, CeSiMo, M´erida, Venezuela, and Universidade Estadual Paulista, Instituto de Física Teórica, S˜ao Paulo, Brazil

DOI:

https://doi.org/10.33044/revuma.2058

Abstract

Studies of the dynamics of predator-prey systems are abundant in the literature. In an attempt to account for more realistic models, previous studies have opted for the use of discrete predator-prey systems with ratio-dependent functional response. In the present research we go a step further with the inclusion of impulsive effects in the dynamics. More concretely, by assuming that the coefficients involved in the system and the impulses are periodic, we obtain sufficient conditions for the existence of periodic solutions. We present some numerical examples to
illustrate the effectiveness of our results.

Downloads

Download data is not yet available.

References

R. P. Agarwal, Difference Equations and Inequalities, second edition, Monographs and Textbooks in Pure and Applied Mathematics, 228, Marcel Dekker, New York, 2000. MR 1740241.

R. P. Agarwal and P. J. Y. Wong, Advanced Topics in Difference Equations, Mathematics and its Applications, 404, Kluwer Academic Publishers, Dordrecht, 1997. MR 1447437.

J. Aguirre, D. Papo, and J. M. Buldú, Successful strategies for competing networks, Nature Phys. 9 (2013), 230–234.

H. R. Akcakaya, R. Arditi, and L. R. Ginzburg, Ratio-dependent predation: an abstraction that works, Ecology 76 (1995), no. 3, 995–1004.

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: ratio-dependence, J. Theor. Biol. 139 (1989), no. 3, 311–326.

D. Baĭnov and P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, Pitman Monographs and Surveys in Pure and Applied Mathematics, 66, Longman Scientific & Technical, Harlow, 1993. MR 1266625.

E. Beretta and Y. Kuang, Global analyses in some delayed ratio-dependent predator-prey systems, Nonlinear Anal. 32 (1998), no. 3, 381–408. MR 1610586.

A. Cardillo, C. Reyes, F. Naranjo, and J. Gómez, Evolutionary vaccination dilemma in complex networks, Phys. Rev. E 88 (2013), 032803.

Y. Chen and Z. Zhou, Stable periodic solution of a discrete periodic Lotka–Volterra competition system, J. Math. Anal. Appl. 277 (2003), no. 1, 358–366. MR 1954481.

X. Ding and J. Jiang, Periodicity in a generalized semi-ratio-dependent predator-prey system with time delays and impulses, J. Math. Anal. Appl. 360 (2009), no. 1, 223–234. MR 2548378.

M. Fan and K. Wang, Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey system, Math. Comput. Modelling 35 (2002), no. 9-10, 951–961. MR 1910673.

M. Fan, Q. Wang, and X. Zou, Dynamics of a non-autonomous ratio-dependent predator-prey system, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), no. 1, 97–118. MR 1960049.

H. I. Freedman and R. M. Mathsen, Persistence in predator-prey systems with ratio-dependent predator influence, Bull. Math. Biol. 55 (1993), no. 4, 817–827.

H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Monographs and Textbooks in Pure and Applied Mathematics, 57, Marcel Dekker, New York, 1980. MR 0586941.

R. E. Gaines and J. L. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Lecture Notes in Mathematics, 568, Springer-Verlag, Berlin, 1977. MR 0637067.

S.-B. Hsu, T.-W. Hwang, and Y. Kuang, Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system, J. Math. Biol. 42 (2001), no. 6, 489–506. MR 1845589.

H.-F. Huo and W.-T. Li, Stable periodic solution of the discrete periodic Leslie-Gower predator-prey model, Math. Comput. Modelling 40 (2004), no. 3-4, 261–269. MR 2091059.

C. Jost, O. Arino, and R. Arditi, About deterministic extinction in ratio-dependent predator-prey models, Bull. Math. Biol. 61 (1999), 19–32.

B. Karrer and M. E. J. Newman, Competing epidemics on complex networks, Phys. Rev. E 84 (2011), 036106.

Y. Kuang, Rich dynamics of Gause-type ratio-dependent predator-prey system, in Differential Equations with Applications to Biology (Halifax, NS, 1997), 325–337, Fields Inst. Commun., 21, Amer. Math. Soc., Providence, RI, 1999. MR 1662624.

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol. 36 (1998), no. 4, 389–406. MR 1624192.

Z. Li and F. Chen, Almost periodic solutions of a discrete almost periodic logistic equation, Math. Comput. Modelling 50 (2009), no. 1-2, 254–259. MR 2542607.

M. Lizana and J. J. Marín V., Pattern formation in a reaction-diffusion ratio-dependent predator-prey model, Miskolc Math. Notes 6 (2005), no. 2, 201–216. MR 2199165.

J. D. Murray, Mathematical Biology, Biomathematics, 19, Springer-Verlag, Berlin, 1989. MR 1007836.

C. Poletto, S. Meloni, A. Van Metre, V. Colizza, Y. Moreno, and S. Vespignani, Characterising two-pathogen competition in spatially structured environments, Sci. Rep. 5 (2015), 7895.

S. Shen and P. Weng, Positive periodic solution of a discrete predator-prey patch-system, Acta Math. Appl. Sin. Engl. Ser. 24 (2008), no. 4, 627–642. MR 2448362.

I. Stamova and G. Stamov, Applied Impulsive Mathematical Models, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, 2016. MR 3496133.

Q. Wang, Y. Zhang, Z. Wang, M. Ding, and H. Zhang, Periodicity and attractivity of a ratio-dependent Leslie system with impulses, J. Math. Anal. Appl. 376 (2011), no. 1, 212–220. MR 2745401.

D. Xiao and S. Ruan, Global dynamics of a ratio-dependent predator-prey system, J. Math. Biol. 43 (2001), no. 3, 268–290. MR 1868217.

J. Zhang and J. Wang, Periodic solutions for discrete predator-prey systems with the Beddington–DeAngelis functional response, Appl. Math. Lett. 19 (2006), no. 12, 1361–1366. MR 2264191.

Z. Zhou and X. Zou, Stable periodic solutions in a discrete periodic logistic equation, Appl. Math. Lett. 16 (2003), no. 2, 165–171. MR 1962311.

Downloads

Published

2022-05-07

Issue

Section

Article