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C-GROUPS AND MIXED C-GROUPS OF BOUNDED LINEAR
OPERATORS ON NON-ARCHIMEDEAN BANACH SPACES

ABDELKHALEK EL AMRANI, AZIZ BLALI, AND JAWAD ETTAYB

Abstract. We introduce and study C-groups and mixed C-groups of bounded
linear operators on non-archimedean Banach spaces. Our main result extends
some existing theorems on this topic. In contrast with the classical setting,
the parameter of a given C-group (or mixed C-group) belongs to a clopen ball
Ωr of the ground field K. As an illustration, we discuss the solvability of some
homogeneous p-adic differential equations for C-groups and inhomogeneous
p-adic differential equations for mixed C-groups when α = −1. Examples are
given to support our work.

1. Introduction and preliminaries

In the classical setting, the theory of one-parameter semigroups (or groups) of
linear operators on Banach spaces started in the first half of the last century, ac-
quired its core in 1948 with the Hille–Yosida generation theorem [8], and thanks
to the efforts of many different schools, the theory reached a certain state of per-
fection, which is well represented in the monograph by A. Pazy [8]. Recently, the
situation is characterized by manifold applications of this theory, not only to tra-
ditional areas such as partial differential equations or stochastic processes. Groups
have become important tools for integro-differential equations and functional dif-
ferential equations, in quantum mechanics or in infinite-dimensional control theory.
Semigroup methods are also applied with great success to concrete equations aris-
ing, e.g., in population dynamics or transport theory. However, semigroup theory
is in competition with alternative approaches in all of these fields, and the relevant
functional-analytic toolbox now presents a highly diversified picture.

In non-archimedean operator theory, T. Diagana [2] introduced the concept of
C0-groups of bounded linear operators on free non-archimedean Banach space.
Also, in [5], A. El Amrani, A. Blali, J. Ettayb and M. Babahmed introduced and
studied the notions of C-groups and cosine family of bounded linear operators on
non-archimedean Banach space. As an application of C-groups of linear operators is
the p-adic abstract Cauchy problem for differential equations on a non-archimedean
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Banach space X given by

ACP(A;x)


du(t)
dt

= Au(t), t ∈ Ωr,

u(0) = Cx,

where A : D(A) → X is a linear operator and C is an invertible operator with
x ∈ D(A). By Remark 1.13 below, ACP(A;x) has a solution.

Throughout this paper, X is a non-archimedean (n.a.) Banach space over a (n.a.)
non-trivially complete valued field K with valuation | · |, B(X) denotes the set of all
bounded linear operators from X into X, Qp is the field of p-adic numbers (p ≥ 2
being a prime) equipped with p-adic valuation | · |p, Zp denotes the ring of p-adic
integers (the ring of p-adic integers Zp is the unit ball of Qp). For more details and
related issues, we refer to [2, 3]. We denote the completion of algebraic closure of
Qp under the p-adic absolute value | · |p by Cp (see [6]). Given r > 0, Ωr is the
clopen ball of K centred at 0 with radius r, i.e., Ωr = {t ∈ K : |t| < r}.

In the non-archimedean context, a family (T (t))t∈Ωr
⊆ B(X) is called a group

of bounded linear operators if T (0) = I and for all t, s ∈ Ωr, T (t+ s) = T (t)T (s),
where I is the unit operator of X. For more details, we refer to [2, 5].

Assume that K = Qp and let A ∈ B(X) be such that ‖A‖ < p
−1

p−1 ; then the

function defined for all t ∈ Ω −1
p−1

by f(t) =
( ∞∑
n=0

(tA)n

n!

)
x is the solution of the

homogeneous p-adic differential equation given by
du

dt
= Au, u(0) = x, for a fixed x ∈ X.

The aim of this paper is to introduce and study the notions of C-groups and mixed
C-groups on non-archimedean Banach spaces over K. In contrast with the classical
setting, the parameter of a given C-group (or mixed C-group) belongs to a clopen
ball Ωr of the ground field K. As an illustration, we will discuss the solvability of
some homogeneous p-adic differential equations for C-groups (Remark 1.13) and
inhomogeneous p-adic differential equations for mixed C-groups (Remark 3.18)
when α = −1.

Definition 1.1 ([3, Definition 2.1]). Let X be a vector space over K. A non-
negative real valued function ‖ · ‖ : X → R+ is called a non-archimedean norm
if:

(i) for all x ∈ X, ‖x‖ = 0 if and only if x = 0;
(ii) for any x ∈ X and λ ∈ K, ‖λx‖ = |λ|‖x‖;
(iii) for any x, y ∈ X, ‖x+ y‖ ≤ max(‖x‖, ‖y‖).

Property (iii) in Definition 1.1 is referred to as the ultrametric or strong triangle
inequality.

Definition 1.2 ([3, Definition 2.2]). A non-archimedean normed space is a pair
(X; ‖ · ‖) where X is a vector space over K and ‖ · ‖ is a non-archimedean norm
on X.
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Definition 1.3 ([2, Definition 2.2]). A non-archimedean Banach space is a vector
space endowed with a non-archimedean norm, which is complete.

For more details on non-archimedean Banach spaces and related issues, see for
example [3].
Proposition 1.4 ([3, Proposition 2.16]).

(1) A closed subspace of a non-archimedean Banach space is a non-archimedean
Banach space;

(2) The direct sum of two non-archimedean Banach spaces is a non-archimedean
Banach space.

Example 1.5 ([3, Example 2.20]). Let c0 (K) denote the set of all sequences (xi)i∈N
in K such that lim

i→∞
xi = 0. Then, c0(K) is a vector space over K and

‖(xi)i∈N‖ = sup
i∈N
|xi|

is a non-archimedean norm for which (c0(K), ‖·‖) a non-archimedean Banach space.
In this section, we define and discuss properties of non-archimedean Banach

spaces that have bases.
Definition 1.6 ([2, Definition 2.5]). A non-archimedean Banach space (X, ‖ · ‖)
over a non-archimedean valued field (complete) (K, | |) is said to be a free non-
archimedean Banach space if there exists a family (xi)i∈I of elements of X, indexed
by a set I, such that each element x ∈ X can be written uniquely as a pointwise
convergent series defined by x =

∑
i∈I λixi, and ‖x‖ = supi∈I |λi|‖xi‖. The family

(xi)i∈I is then called an orthogonal basis for X. If, for all i ∈ I, ‖xi‖ = 1, then
(xi)i∈I is called an orthonormal basis of X. For more details of orthogonality and
the concepts of bases in the non-archimedean case, we refer to [9, 10].

The treatment of those non-archimedean Banach spaces in the general case can
be found in [4] and in the unpublished manuscript “Geometry of the p-adic Hilbert
Spaces” (1999) by B. Diarra. Moreover, X is a free non-archimedean Banach space
over K if and only if X is isometrically isomorphic to c0(I, u) for a certain index
set I and an application u : I → R∗+. By [9, Theorem 2.58] c0(I) is of countable
type if and only if I is countable. For more details we refer to [9, 10]. In this work,
the basis of the free n.a. Banach spaces considered is countable, I = N.
Definition 1.7 ([3]). Let (X, ‖ · ‖) be a non-archimedean Banach space. The
non-archimedean Banach space (B(X), ‖ · ‖) is the collection of all bounded linear
operators from X into itself equipped with the operator norm defined by:

for all A ∈ B(X), ‖A‖ = sup
x∈X\{0}

‖A (x) ‖
‖x‖

.

For more details of non-archimedean linear operator theory, we refer to [2, 3, 4]
and to Diarra’s unpublished manuscript cited above.

Throughout this paper, B(X) is equipped with the norm of Definition 1.7 and,
for all r > 0, Ω∗r = Ωr\{0} denotes the clopen ball of center 0 with radius r deprived
of zero.
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Definition 1.8 ([3, Definition 3.1]). Let r > 0 be a real number chosen such that
(T (t))t∈Ωr

are well defined. A one-parameter family (T (t))t∈Ωr
of bounded linear

operators from X into X is a group of bounded linear operators on X if
(i) T (0) = I, where I is the unit operator of X;

(ii) for all t, s ∈ Ωr, T (t+ s) = T (t)T (s).
The group (T (t))t∈Ωr

will be called of class C0 or strongly continuous if the follow-
ing condition holds:

For each x ∈ X, lim
t→0
‖T (t)x− x‖ = 0.

A group of bounded linear operators (T (t))t∈Ωr is uniformly continuous if and only
if lim
t→0
‖T (t)− I‖ = 0. The linear operator A defined on

D(A) =
{
x ∈ X : lim

t→0

T (t)x− x
t

exists
}

by

Ax = lim
t→0

T (t)x− x
t

, for each x ∈ D(A),

is called the infinitesimal generator of the group (T (t))t∈Ωr
.

We introduce the following definition.

Definition 1.9 ([5, Definition 2.21]). Let r > 0 and let C ∈ B(X) be invertible.
A one-parameter family (T (t))t∈Ωr of bounded linear operators from X into X is
called a C-group if the following conditions hold:

(i) T (0) = C;
(ii) for all t, s ∈ Ωr, CT (t+ s) = T (t)T (s);
(iii) for all x ∈ X, T (·)x : Ωr → X is continuous.

The linear operator A defined on

D(A) =
{
x ∈ X : lim

t→0

T (t)x− Cx
t

exists
}

by

Ax = C−1 lim
t→0

T (t)x− Cx
t

, for each x ∈ D(A),

is called the infinitesimal generator of the C-group (T (t))t∈Ωr
.

Remark 1.10 ([5, Definition 2.21]). Let (T (t))t∈Ωr
be a C0-group of infinitesimal

generator A, and let C ∈ B(X) be invertible such that for all t ∈ Ωr, CT (t) =
T (t)C. Define for each t ∈ Ωr the family of linear operators S(t) = T (t)C. Then
(S(t))t∈Ωr is a C-group of infinitesimal generator A. In this sense, Definition 1.9
generalizes Definition 1.8 of C0-group.

We begin with the following theorem.
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Theorem 1.11 ([5, Theorem 2.23]). Let (T (t))t∈Ωr be a C-group satisfying the
following condition: there exists M > 0 such that for each t ∈ Ωr, ‖T (t)‖ ≤ M .
Let A be its infinitesimal generator. Then, for every x ∈ D(A) and t ∈ Ωr,
T (t)x ∈ D(A). Furthermore,

dT (t)
dt

x = AT (t)x = T (t)Ax.

Remark 1.12. Let X be a free non-archimedean Banach space, let (T (t))t∈Ωr
be

a C-group of linear operators of infinitesimal generator A on X. From [2, Remark
3.5], A may or may not be a bounded linear operator on X.

These are generalizations of C0-groups, which can be applied directly to the
many p-adic differential and integral equations that may be modeled as a p-adic
abstract Cauchy problem on a non-archimedean Banach space. Thanks to Theo-
rem 1.11, we have:

Remark 1.13. One of the consequences of Theorem 1.11 is that the function
v(t) = T (t)x, t ∈ Ωr, for some x ∈ D(A), is the solution to the homogeneous p-adic
differential equation given by

du(t)
dt

= Au(t), t ∈ Ωr,

u(0) = Cx,

where A : D(A) ⊂ X → X is the infinitesimal generator of the C-group (T (t))t∈Ωr

and u : Ωr → D(A) is an X-valued function.

2. Main results

We begin with the following example.

Example 2.1. Let X be a non-archimedean Banach space over Cp. Let A,C ∈
B(X) be such that C is invertible, AC = CA and ‖A‖ < r with r = p

−1
p−1 . Then for

all t ∈ Ωr, T (t) = CetA (in particular, if C = (I − A)−1) is a C-group of bounded
linear operators on X. In fact:

(i) T (0) = C.
(ii) For all t, s ∈ Ωr, T (t)T (s) = CetACesA = C2e(t+s)A = CT (s+ t).
(iii) It is easy to check that for all x ∈ X, T (·)x : Ωr → X is continuous.

Proposition 2.2. Let X be a non-archimedean Banach space, let (T (t))t∈Ωr be a
C1-group of infinitesimal generator A on X and let C2 ∈ B(X) be invertible such
that for all t ∈ Ωr, C2T (t) = T (t)C2. Then (C2T (t))t∈Ωr

is a C1C2-group on X.

Proof. Setting, for all t ∈ Ωr, S(t) = C2T (t), let us show that (S(t))t∈Ωr
is a

C1C2-group on X. In fact:
(i) S(0) = C2T (0) = C1C2.
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(ii) For all s, t ∈ Ωr,

S(s)S(t) = C2T (s)C2T (t)
= T (s)T (t)C2

2

= C1T (s+ t)C2
2

= C1C
2
2T (s+ t)

= C1C2S(s+ t).

(iii) It is easy to check that for all x ∈ X, S(·)x : Ωr → X is continuous.
Thus, (S(t))t∈Ωr

is a C1C2-group on X. �

We have the following example.

Example 2.3. Assume that K = Qp and r = p
−1

p−1 . Let X be a free non-
archimedean Banach space over Qp and let (ei)i∈N be an orthogonal base of X.
Define, for each t ∈ Ωr and x ∈ X such that x =

∑
i∈N xiei,

T (t)x =
∑
i∈N

(1− µi)etµixiei,

where (µi)i∈N ⊂ Ωr. It is easy to check that the family (T (t))t∈Ωr
is well defined

on X, and we have the following proposition.

Proposition 2.4. The family (T (t))t∈Ωr
of bounded linear operators given above is

a C-group of bounded linear operators, whose infinitesimal generator is the bounded
diagonal operator A defined by Ax =

∑
i∈N µixiei for each x =

∑
i∈N xiei ∈ X.

Proof. Let X be a free non-archimedean Banach space over Qp and let (ei)i∈N be
an orthogonal base of X. Define for each t ∈ Ωr, i ∈ N,

T (t)ei = (1− µi)etµiei
def=
(∑
n∈N

(1− µi)µni tn

n!

)
ei,

where (µi)i∈N ⊂ Ωr. Since for all i ∈ N, tµi ∈ Ωr, we have for all t ∈ Ωr and
x ∈ X, ‖T (t)x‖ ≤ sup

i∈N

∣∣∣(1− µi)etµi

∣∣∣
p
‖x‖ <∞; then, for all t ∈ Ωr, ‖T (t)‖ is finite.

Hence the family (T (t))t∈Ωr
is well defined on X. Furthermore:

(i) T (0) = I−A (since A is a diagonal operator on X, we have ‖A‖ = sup
i∈N
|µi|,

thus ‖A‖ < r < 1, and we have that I −A is invertible).
(ii) For all t, s ∈ Ωr,

T (t)T (s) = (I −A)etA(I −A)esA

= (I −A)(I −A)e(t+s)A

= (I −A)T (t+ s).

(iii) It is easy to check that for all x ∈ X, S(·)x : Ωr → X is continuous on Ωr.
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Thus (T (t))t∈Ωr is a C-group of bounded linear operators on X where C = I −A.
Let B be the infinitesimal generator of (T (t))t∈Ωr

. It remains to show that A = B.
Let us show that D(B) = X(= D(A)). Clearly, for each t ∈ Ω∗r and i ∈ N,

T (t)ei − Cei
t

= C

(
etµi − 1

t

)
ei.

Thus, for all t ∈ Ω∗r and all i ∈ N,

C−1
(
T (t)ei − Cei

t

)
=
(
etµi − 1

t

)
ei.

Hence, for all x =
∑
i∈N xiei ∈ X and t ∈ Ω∗r ,

|xi|p
∥∥∥∥C−1T (t)ei − Cei

t

∥∥∥∥ ≤ |xi|p‖ei‖|t|p
→ 0 as i→∞.

Thus,

D(B) =
{
x = (xi)i∈N : lim

i→∞
|xi|p

∥∥∥C−1
(
T (t)ei − Cei

t

)∥∥∥ = 0
}
.

To complete the proof, it suffices to prove that

for all i ∈ N, lim
t→0

∥∥∥∥Aei − C−1
(
T (t)ei − Cei

t

)∥∥∥∥ = 0.

The latter is actually obvious since lim
t→0

(
etµi − 1

t

)
= µi, and hence A = B is the

infinitesimal generator of the C-group (T (t))t∈Ωr
. �

We introduce the following definition.

Definition 2.5. Let (T (t))t∈Ωr
be a C-group of bounded linear operators on X.

(T (t))t∈Ωr is said to be a uniformly continuous C-group on X if
lim
t→0
‖T (t)− C‖ = 0.

Theorem 2.6. Let X be a non-archimedean Banach space over Qp and let A ∈
B(X) be such that ‖A‖ < r

(
= p

−1
p−1

)
. Then A is the infinitesimal generator of an

uniformly continuous C-group of bounded linear operators (T (t))t∈Ωr .

Proof. Suppose that A is a bounded linear operator on X with ‖A‖ < r
(

= p
−1

p−1

)
and set, for all t ∈ Ωr,

T (t) = (I −A)etA def=
∑
n∈N

(I −A)(tA)n

n! .

Clearly, this series converges in norm and defines a family of bounded linear oper-
ators on X by |t|‖A‖ < r. Furthermore:

(i) T (0) = I −A (since ‖A‖ < r < 1, I −A is invertible).
(ii) The same as in Proposition 2.4.
(iii) It is easy to check that for all x ∈ X, S(·)x : Ωr → X is continuous.
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Thus (T (t))t∈Ωr is a C-group of bounded linear operators on X where C = I −A.
For all t ∈ Ωr,

‖T (t)− C‖ = ‖(I −A)(etA − 1)‖
≤ ‖I −A‖‖etA − I‖
≤ ‖etA − I‖.

Hence
lim
t→0
‖T (t)− C‖ = 0.

For all t ∈ Ω∗r ,
T (t)− C

t
= C

(
etA − I

t

)
.

Thus, for all t ∈ Ω∗r ,

C−1
(
T (t)− C

t

)
=
(
etA − I

t

)
=
∞∑
n=0

tnAn+1

(n+ 1)! .

Hence, for all t ∈ Ω∗r ,∥∥∥∥C−1
(
T (t)− C

t

)
−A

∥∥∥∥ =
∥∥∥∥etA − It

−A
∥∥∥∥

≤ |t|‖A‖‖ξt‖,

where ξt =
∞∑
n=0

tnAn+1

(n+ 2)! converges. Consequently, lim
t→0

∥∥∥∥C−1
(
T (t)− C

t

)
−A

∥∥∥∥ = 0.

Then, (T (t))t∈Ωr given above is an uniformly continuous C-group of bounded linear
operators of infinitesimal generator A. �

We introduce the following definition.

Definition 2.7 ([5, Definition 2.16]). Let X and Y be two non-archimedean
Banach spaces over a non-archimedean valued field K. For all T ∈ B(X) and
S ∈ B(Y ), the operator T ⊕ S is defined on the Banach space X ⊕ Y = {(x, y) :
x ∈ X, y ∈ Y } = {x ⊕ y : x ∈ X, y ∈ Y } endowed with the n.a. norm ‖x ⊕ y‖ =
max(‖x‖, ‖y‖), by

for all x⊕ y ∈ X ⊕ Y , (T ⊕ S)(x⊕ y) = Tx⊕ Sy = (Tx, Sy).

Proposition 2.8. For all invertible operators A and B in B(X), A⊕B is invertible
on X ⊕X. Furthermore, its inverse, denoted by (A⊕B)−1, satisfies

(A⊕B)−1 = A−1 ⊕B−1.

Proof. Let A,B ∈ B (X) be two invertible operators; then A−1A = AA−1 = I and
B−1B = BB−1 = I. Therefore for all (x⊕ y) ∈ X ⊕X, we have(

A−1 ⊕B−1) (A⊕B) (x⊕ y) =
(
A−1 ⊕B−1) (Ax⊕By)

=
(
A−1Ax

)
⊕
(
B−1By

)
= x⊕ y
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and
(A⊕B)

(
A−1 ⊕B−1) (x⊕ y) = (A⊕B)

(
A−1x⊕B−1y

)
=
(
AA−1x⊕BB−1x

)
= x⊕ y.

Thus, for all x⊕ y ∈ X ⊕X,

(A⊕B)
(
A−1 ⊕B−1) (x⊕ y) =

(
A−1 ⊕B−1) (A⊕B) (x⊕ y) = x⊕ y.

Then, A⊕B is invertible on X⊕X and its inverse is (A⊕B)−1 = A−1⊕B−1. �

Example 2.9. Let A,B ∈ B(X) be such that max(‖A‖, ‖B‖) < r
(

= p
−1

p−1

)
. Set,

for all t ∈ Ωr,
T (t) = etA ⊕ etB .

It is easy to see that for all t ∈ Ωr, T (t) is invertible and, for all t ∈ Ωr, T (t)−1 =
T (−t).

We begin with the following theorem.

Theorem 2.10. Let (T (t))t∈Ωr
be a C-group of infinitesimal generator A on X.

Set, for all t ∈ Ωr, S(t) = T (t)⊕ I. Then we have:
(i) (S(t))t∈Ωr is a C ⊕ I-group on X ⊕X.
(ii) The infinitesimal generator of (S(t))t∈Ωr

is the operator T defined on
D(T ) = D(A)⊕X by T (x⊕ y) = Ax⊕ 0, for all x ∈ D(A), y ∈ X.

Proof. (i) Since (T (t))t∈Ωr is a C-group of infinitesimal generator A on X,

S(0) = T (0)⊕ I = C ⊕ I.

Let x⊕ y ∈ X ⊕X and t, s ∈ Ωr. We have
(C ⊕ I)S(t+ s)(x⊕ y) = (C ⊕ I)T (t+ s) (x)⊕ y

= CT (t+ s)(x)⊕ y
= T (t)T (s)(x)⊕ y
= (T (t)⊕ I)(T (s)(x)⊕ y)
= S(t) ((T (s)⊕ I)(x⊕ y))
= S(t)S(s)(x⊕ y).

On the other hand,
lim
t→0
‖S(t)(x⊕ y)− (C ⊕ I)(x⊕ y)‖ = lim

t→0
‖(T (t)x− Cx)⊕ 0‖

= lim
t→0

max(‖T (t)x− Cx‖, 0)

= lim
t→0
‖T (t)x− Cx‖

= 0.

Therefore (S(t))t∈Ωr
is a C ⊕ I-group on X ⊕X.
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(ii) Let x ∈ D(A) and y ∈ X. We have

lim
t→0

S(t)(x⊕ y)− (C ⊕ I) (x⊕ y)
t

= lim
t→0

(T (t) (x)− Cx)⊕ 0
t

= CAx⊕ 0 = (C ⊕ I)(Ax⊕ 0).
Thus, for all x ∈ D(A) and y ∈ X we have

(C ⊕ I)−1
(

lim
t→0

S(t)(x⊕ y)− (C ⊕ I)(x⊕ y)
t

)
= Ax⊕ 0.

Then D(T ) = D(A) ⊕ X and T (x ⊕ y) = A(x) ⊕ 0, for all x ∈ D(A) and for all
y ∈ X. �

Theorem 2.11. Let (A(t))t∈Ωr
and (B(t))t∈Ωr

be, respectively, a C1-group on X
of infinitesimal generator A and a C2-group on X of infinitesimal generator B. We
set, for all t ∈ Ωr, T (t) = A(t)⊕B(t). Then

(i) (T (t))t∈Ωr
is a C1 ⊕ C2-group on X ⊕X.

(ii) The infinitesimal generator of (T (t))t∈Ωr
is the operator T defined on

D(T ) = D(A)⊕D(B) by T (x⊕ y) = Ax⊕By for all (x, y) ∈ X2.

Proof. (i) Let x⊕ y ∈ X ⊕X. Since (A(t))t∈Ωr
and (B(t))t∈Ωr

are, respectively, a
C1-group and a C2-group on X, we have

T (0)(x⊕ y) = A(0)x⊕B(0)y = C1x⊕ C2y = (C1 ⊕ C2)(x⊕ y).
Hence T (0) = C1 ⊕ C2. We also have, for all (t, s) ∈ Ω2

r,
(C1 ⊕ C2)T (t+ s)(x⊕ y) = (C1 ⊕ C2)(A(t+ s)x⊕B(t+ s)y)

= C1A(t+ s)x⊕ C2B(t+ s)y
= A(t)A(s)x⊕B(t)B(s)y
= (A(t)⊕B(t))(A(s)x⊕B(s)y)
= T (t)(A(s)⊕B(s)(x⊕ y))
= T (t)T (s)(x⊕ y).

Then, (C1 ⊕ C2)T (t+ s) = T (t)T (s). On the other hand,
lim
t→0
‖T (t)(x⊕ y)− (C1 ⊕ C2) (x⊕ y) ‖ = lim

t→0
‖A(t)x⊕B(t)y − C1x⊕ C2y‖

= lim
t→0
‖(A(t)x− C1x)⊕ (B(t)y − C2y)‖

= lim
t→0

max(‖A(t)x− C1x‖, ‖B(t)y − C2y‖)

= 0.
Therefore, (T (t))t∈Ωr

is a C1 ⊕ C2-group on X ⊕X.
(ii) Let x ∈ D(A) and y ∈ D(B). We have

lim
t→0

T (t)(x⊕ y)− (C1 ⊕ C2)(x⊕ y)
t

= lim
t→0

(A(t)x− C1x)⊕ (B(t)y − C2y)
t

= C1Ax⊕ C2By

= (C1 ⊕ C2)(Ax⊕By).
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Thus, for all x ∈ D(A), y ∈ D(B) we have

(C1 ⊕ C2)−1
(

lim
t→0

T (t)(x⊕ y)− (C1 ⊕ C2)(x⊕ y)
t

)
= Ax⊕By.

Consequently, D(T ) = D(A)⊕D(B) and T (x⊕ y) = Ax⊕By. �

3. Mixed C-groups of bounded linear operators on some
non-archimedean Banach spaces

We introduce the following definition.

Definition 3.1. Let r > 0 be a real number and let C ∈ B(X) be invertible.
A family (T (t))t∈Ωr of bounded linear operators is said to satisfy a p-adic H-C-
generalized Cauchy equation of bounded linear operator on X if

for all t, s ∈ Ωr, CT (s+ t) = H(T (s), T (t)),
where H : B(X)×B(X)→ B(X) is a function.

Remark 3.2. If H
(
T (s), T (t)

)
= T (s)T (t) with T (0) = C, then (T (t))t∈Ωr satis-

fies the first condition of C-groups of bounded linear operators on X.

Definition 3.3. Let r > 0 be a real number and let C ∈ B(X) be invertible.
A family (S(t))t∈Ωr

of bounded linear operators will be called an H-C-group or a
generalized C-group of bounded linear operators on X if

(i) S(0) = C;
(ii) there is a C-group (T (t))t∈Ωr

of bounded linear operators and D ∈ B(X)
such that for all t, s ∈ Ωr,

CS(s+ t) = H(S(s), S(t))
= S(s)S(t) +D(S(s)− T (s))(S(t)− T (t));

(iii) for each x ∈ X, S(·)x : Ωr → S(t)x is continuous on Ωr.
The linear operator A defined on

D(A) =
{
x ∈ X : lim

t→0

S(t)x− Cx
t

exists
}

by

Ax = C−1 lim
t→0

S(t)x− Cx
t

, for each x ∈ D(A),

is called the infinitesimal generator of the H-C-group (S(t))t∈Ωr .

Remark 3.4. Let (S(t))t∈Ωr
be a generalized C-group on X. If D = 0, then

(S(t))t∈Ωr
is a C-group of bounded linear operators on X.

Question 3.5. Can you characterise the infinitesimal generator of an H-C-group
of linear operators on an infinite dimensional non-archimedean Banach space?

Definition 3.6. Let r > 0 be a real number and let C ∈ B(X) be invertible.
A family (S(t))t∈Ωr

is said to be a mixed C-group of bounded linear operators
on X if
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(i) S(0) = C;
(ii) there is a C-group (T (t))t∈Ωr

of bounded linear operators and α ∈ K such
that for all s, t ∈ Ωr,

CS(s+ t) = H(S(s), S(t))
= S(s)S(t) + α(S(s)− T (s))(S(t)− T (t));

(iii) for each x ∈ X, S(·)x : Ωr → S(t)x is continuous on Ωr.
The linear operator A defined on

D(A) =
{
x ∈ X : lim

t→0

S(t)x− Cx
t

exists
}

by

Ax = C−1 lim
t→0

S(t)x− Cx
t

, for each x ∈ D(A),

is called the infinitesimal generator of the mixed C-group (S(t))t∈Ωr .

Remark 3.7. Let (S(t))t∈Ωr be a mixed C-group on X. If α = 0, then (S(t))t∈Ωr

is a C-group of bounded linear operators on X.

We have the following example.

Example 3.8. Let r = p
−1

p−1 . Suppose that X is a non-archimedean Banach space
over Qp, and A,C ∈ B(X) are such that C is invertible, AC = CA and ‖A‖ < r.
Set, for all t ∈ Ωr,

S(t) = CetA + tACetA.

Then one can see that with D = −I, (S(t))t∈Ωr
is an H-C group where for all

t ∈ Ωr, T (t) = CetA. In this case, for all t, s ∈ Ωr, S(s)S(t) = S(t)S(s).
In fact, for D = −I, we have for all t, s ∈ Ωr, CS(s + t) = C2e(s+t)A + (s +

t)AC2e(s+t)A and

S(s)S(t) =
(
CesA + sCAesA

)(
CetA + tACetA

)
= C2e(s+t)A + tAC2e(s+t)A + sAC2e(s+t)A + st(AC)2e(s+t)A

= C2e(s+t)A + (s+ t)AC2e(s+t)A + st(AC)2e(s+t)A

and
(S(s)− T (s))(S(t)− T (t)) = st(AC)2e(t+s)A.

Hence,

S(s)S(t)− (S(s)− T (s))(S(t)− T (t)) = C2e(s+t)A + (s+ t)AC2e(s+t)A

= CS(s+ t).

Conditions (i) and (iii) of Definition 3.3 are easy to verify, so (S(t))t∈Ωr
is an

H-C-group.

The following proposition gives a condition under which an H-C-group family
commute.
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Proposition 3.9. Let (S(t))t∈Ωr be an H-C-group family on X. If I + D is
injective and for all t, s ∈ Ωr, T (s)S(t) = S(t)T (s), then for all t, s ∈ Ωr,
S(s)S(t) = S(t)S(s).

Proof. Assume that I + D is injective and for all t, s ∈ Ωr, T (s)S(t) = S(t)T (s);
then for all t, s ∈ Ωr,
S(t)S(s) +D

(
S(t)− T (t)

)(
S(s)− T (s)

)
= CS(t+ s)
= CS(s+ t)
= S(s)S(t) +D

(
S(s)− T (s)

)(
S(t)− T (t)

)
.

Thus, (I + D)(S(t)S(s) − S(s)S(t)) = 0. Then for all t, s ∈ Ωr, S(s)S(t) =
S(t)S(s). �

Theorem 3.10. Let (S(t))t∈Ωr be an H-C-group family of infinitesimal genera-
tor A on X, with (T (t))t∈Ωr

a C-group of infinitesimal generator A0, such that
there are M1, M2 > 0 such that for all t, s ∈ Ωr, ‖S(t)‖ ≤ M1, ‖T (t)‖ ≤ M2,
T (s)S(t) = S(t)T (s) and S(t)S(s) = S(s)S(t). If x ∈ D(A), then for all t ∈ Ωr,

S(t)x, T (t)x ∈ D(A) and AS(t)x = S(t)Ax.
Furthermore, for any x ∈ D(A0),

S(t)x, T (t)x ∈ D(A0) and A0S(t)x = S(t)A0x,A0T (t)x = T (t)A0x.

Proof. Let x ∈ D(A), s ∈ Ω∗r and t ∈ Ωr. From the boundedness of the (S(t))t∈Ωr ,
it is easy to see that

C−1
(
S(s)S(t)x− CS(t)x

s

)
= S(t)C−1

(
S(s)x− Cx

s

)
→ S(t)Ax as s→ 0.

Consequently, for all t ∈ Ωr, S(t)Ax ∈ D(A) and AS(t)x = S(t)Ax.
From the boundedness of the (T (t))t∈Ωr

, we have

C−1
(
S(s)T (t)x− CT (t)x

s

)
= T (t)C−1

(
S(s)x− Cx

s

)
→ T (t)Ax as s→ 0.

Consequently, for all t ∈ Ωr, T (t)x ∈ D(A) and AT (t)x = T (t)Ax.
The last part can be proved similarly. �

Set A1 = (1 + α)A− αA0, where α ∈ K\{−1}, A0 is the infinitesimal generator
of the C-group (T (t))t∈Ωr

and A is the infinitesimal generator of a mixed C-group
(S(t))t∈Ωr

. We have the following theorem.

Theorem 3.11. Let X be a non-archimedean Banach space over K. Let (S(t))t∈Ωr

be a mixed C-group family of bounded linear operators on X with α ∈ K\{−1}.
Set, for all t ∈ Ωr, T1(t) = (1 + α)S(t) − αT (t). Then (T1(t))t∈Ωr is a C-group
of bounded linear operators whose infinitesimal generator is an extension of A1.
Furthermore, for all x ∈ X and t ∈ Ωr,

S(t)x = 1
1 + α

T1(t)x+ α

1 + α
T (t)x.
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Proof. Let us see the conditions in Definition 1.9:
(i) Trivially, T1(0) = (1 + α)S(0)− αT (0) = C.
(ii) For all t, s ∈ Ωr and x ∈ X, we have

CT1(s+ t)x = (1 + α)CS(s+ t)− αCT (s+ t)x,
and
CT1(s+ t)x = (1 + α)(S(s)S(t) + α(S(s)− T (s))(S(t)− T (t)))x− αT (s)T (t)x

= (1 + α)S(s)S(t)x+ α(1 + α)S(s)S(t)x− α(1 + α)S(s)T (t)x
− α(1 + α)T (s)S(t)x+ α(1 + α)T (s)T (t)x− αT (s)T (t)x

= (1 + α)2S(s)S(t)x− α(1 + α)S(s)T (t)x
− α(1 + α)T (s)S(t)x+ α2T (s)T (t)x

= ((1 + α)S(s)− αT (s))((1 + α)S(t)− αT (t))x
= T1(s)T1(t)x.

(iii) Since (T (t))t∈Ωr and (S(t))t∈Ωr are continuous on Ωr, (T1(t))t∈Ωr is also
continuous on Ωr. So, (T1(t))t∈Ωr is a C-group of bounded linear operators on X.

Now we show that an extension of A1 = (1 +α)A−αA0, where α ∈ K\{−1}, is
the infinitesimal generator of (T1(t))t∈Ωr

. Let B be the infinitesimal generator of
(T1(t))t∈Ωr . By definition of D(A) and D(A0), for x ∈ D(A1) (= D(A) ∩D(A0))
we have

lim
t→0

(
S(t)x− Cx

t

)
= CAx and lim

t→0

(
T (t)x− Cx

t

)
= CA0x.

Then,

lim
t→0

(
T1(t)x− Cx

t

)
= lim
t→0

(
(1 + α)S(t)x− αT (t)x− Cx

t

)
= (1 + α) lim

t→0

(
S(t)x− Cx

t

)
− α lim

t→0

(
T (t)x− Cx

t

)
exists in X. It follows that x ∈ D(B) and A1x = Bx, hence the infinitesimal
generator of (T1(t))t∈Ωr is an extension of A1. �

For α ∈ K\{−1} and D = αI, from Proposition 3.9 and Theorem 3.10 we
conclude:

Proposition 3.12. Let X be a non-archimedean Banach space over K and let
(S(t))t∈Ωr be a mixed C-group family of bounded linear operators on X with α ∈
K\{−1} such that for all t, s ∈ Ωr, T (s)S(t) = S(t)T (s). Then for all t, s ∈ Ωr,
S(s)S(t) = S(t)S(s).

Theorem 3.13. Let X be a non-archimedean Banach space over K. Let (S(t))t∈Ωr

be a mixed C-group family of infinitesimal generator A on X, with (T (t))t∈Ωr a C-
group of infinitesimal generator A0, and α ∈ K\{−1} such that there are M1, M2 >
0 such that for all t, s ∈ Ωr, ‖S(t)‖ ≤M1, ‖T (t)‖ ≤M2, T (s)S(t) = S(t)T (s) and
S(s)S(t) = S(t)S(s). If x ∈ D(A), then for all t ∈ Ωr, S(t)x, T (t)x ∈ D(A) and
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AS(t)x = S(t)Ax. Furthermore, S(t)x, T (t)x ∈ D(A0) and A0S(t)x = S(t)A0x,
A0T (t)x = T (t)A0x for any x ∈ D(A0).

For α = −1, we have the following theorem.
Theorem 3.14. Let X be a non-archimedean Banach space over K. Let (S(t))t∈Ωr

be a mixed C-group family of infinitesimal generator A on X, such that there are
M1, M2 > 0 such that for all t, s ∈ Ωr, ‖S(t)‖ ≤ M1, ‖T (t)‖ ≤ M2, T (s)S(t) =
S(t)T (s) and S(s)S(t) = S(t)S(s), where (T (t))t∈Ωr is a C-group of infinitesimal
generator A0. Then, for all x ∈ D(A) ∩D(A0),

dCS(t)
dt

x = C(A0S(t)x+ (A−A0)T (t)x).

Proof. Let x ∈ D(A) ∩D(A0). Using Theorem 3.10, we have
d

dt
S(t)Cx = lim

h→0

CS(h+ t)x− S(t)Cx
h

= lim
h→0

S(h)S(t)x+ (T (h)− S(h))(S(t)− T (t))x− S(t)Cx
h

= lim
h→0

T (h)S(t)x− CS(t)x
h

+ lim
h→0

S(h)T (t)x− CT (t)x
h

− lim
h→0

T (h)T (t)x− CT (t)x
h

= C (A0S(t)x+AT (t)x−A0T (t)x) . �

Proposition 3.15. Let X be a finite dimensional Banach space over K. Let
(T (t))t∈Ωr

be a C-group of infinitesimal generator A0 on X such that for all t ∈ Ωr,
A0T (t) = T (t)A0. Let A ∈ B(X) be such that for all t ∈ Ωr, AT (t) = T (t)A. Then,
for all t ∈ Ωr, S(t) = T (t) + t(A − A0)T (t) is a mixed C-group of infinitesimal
generator A on X with α = −1.
Proof. Since (T (t))t∈Ωr is a C-group on X, we have T (0) = C, hence S(0) =
T (0) = C. By assumption, for all t ∈ Ωr, AT (t) = T (t)A and A0T (t) = T (t)A0;
then CA = AC and CA0 = A0C. Let s, t ∈ Ωr. We have
CS(s+ t) = CT (s+ t) + (s+ t)(A−A0)CT (s+ t)

= T (s)T (t) + sAT (s)T (t)− sA0T (s)T (t) + tAT (s)T (t)− tA0T (s)T (t),
and

S(s)S(t)− (S(s)− T (s))(S(t)− T (t))
= (T (s) + s(A−A0)T (s))(T (t) + t(A−A0)T (t))
− st(A−A0)T (s)(A−A0)T (t)

= T (s)T (t) + tT (s)AT (t)− tT (s)A0T (t)
+ sAT (s)T (t)− sA0T (s)T (t)
+ st(A−A0)T (s)(A−A0)T (t)
− st(A−A0)(A−A0)T (s)T (t)

= CS(s+ t).
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Also we have that, for all x ∈ X, t ∈ Ωr 7→ T (t)x is continuous, and then t ∈ Ωr 7→
S(t)x is continuous. Consequently, (S(t))t∈Ωr

is a mixed C-group of bounded linear
operators on X with α = −1. It is easy to see that A is the infinitesimal generator
of (S(t))t∈Ωr

. �

Example 3.16. Assume that K = Qp. Let A,A0, C ∈ B(X) be such that ‖A0‖ <
p

1
1−p , CA = AC and CA0 = A0C. We consider the family of bounded linear

operators on X defined by
for all t ∈ Ωr, S(t) = CetA0 + t(A−A0)CetA0 .

It is easy to see that for α = −1, (S(t))t∈Ωr
is a mixed C-group of bounded linear

operators of infinitesimal generator A on X.

In the following theorem it will be proved that multiplication of an H-C-group
and a C-group is an H-C-group if these two families commute.

Theorem 3.17. Let X be a non-archimedean Banach space over K. Let (B(t))t∈Ωr

be a commuting strongly continuous H-C-group of infinitesimal generator B on X
with the C-group (T (t))t∈Ωr

of infinitesimal generator A0 and D ∈ B(X). Let
(A(t))t∈Ωr

be a C-group of infinitesimal generator A such that for all t, s ∈ Ωr,
A(t)D = DA(t) and A(s)B(t) = B(t)A(s). Then, for all t ∈ Ωr, V (t) = A(t)B(t)
is an H-C2-group of infinitesimal generator A+B.

Proof. Trivially, V (0) = C2. Also for any s, t ∈ Ωr,

C2V (s+ t) = CA(s+ t)CB(s+ t)
= A(s)A(t)(B(s)B(t) +D(B(s)− T (s))(B(t)− T (t)))
= V (s)V (t) +D(V (s)−A(s)T (s))(V (t)−A(t)T (t)).

Thus (V (t))t∈Ωr
is an H-C2-group which is obviously strongly continuous. Also

for any x ∈ D(A) ∩D(B),

lim
t→0

V (t)x− C2x

t
= lim
t→0

A(t)B(t)x− CB(t)x
t

+ lim
t→0

CB(t)x− C2x

t

= C2Ax+ C2Bx.

Then,

C−2 lim
t→0

V (t)x− C2x

t
= (A+B)x. �

Remark 3.18. Let X be a non-archimedean Banach space over K. Theorem 3.14
shows that for α = −1, if (S(t))t∈Ωr

is a mixed C-group of infinitesimal generator A,
with (T (t))t∈Ωr

a C-group of infinitesimal generator A0 such that for all t, s ∈ Ωr,
T (s)S(t) = S(t)T (s) and S(s)S(t) = S(t)S(s), then u(t) = S(t)x is a solution of
the inhomogeneous p-adic differential equation given by

du(t)
dt

= A0u(t) + (A−A0)f(t), t ∈ Ωr,

and u(0) = Cx, x ∈ D(A0) ∩D(A) with f(t) = T (t)x.
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