On conformal geometry of four-dimensional generalized symmetric spaces

Authors

  • Amirhesam Zaeim Department of Mathematics, Payame Noor University, P.O. Box 19395- 3697, Tehran, I. R. of Iran
  • Yadollah AryaNejad Department of Mathematics, Payame Noor University, P.O. Box 19395-3697, Tehran, I. R. of Iran
  • Mokhtar Gheitasi Department of Mathematics, Payame Noor University, P.O. Box 19395-3697, Tehran, I. R. of Iran

DOI:

https://doi.org/10.33044/revuma.2086

Abstract

We study conformal geometry on an important class of four-dimensional (pseudo-)Riemannian manifolds: generalized symmetric spaces. This leads to the general description of conformally Einstein metrics on the spaces under consideration. Finally, the class of oscillator Lie groups is studied for the conformally Einstein property.

Downloads

Download data is not yet available.

References

H. W. Brinkmann, Riemann spaces conformal to Einstein spaces, Math. Ann. 91 (1924), no. 3-4, 269–278. MR 1512193.

H. W. Brinkmann, Einstein spaces which are mapped conformally on each other, Math. Ann. 94 (1925), no. 1, 119–145. MR 1512246.

G. Calvaruso, Homogeneous structures on three-dimensional Lorentzian manifolds, J. Geom. Phys. 57 (2007), no. 4, 1279–1291. MR 2287304.

G. Calvaruso, Oscillator spacetimes are Ricci solitons, Nonlinear Anal. 140 (2016), 254–269. MR 3492737.

G. Calvaruso and E. Rosado, Ricci solitons on low-dimensional generalized symmetric spaces, J. Geom. Phys. 112 (2017), 106–117. MR 3588761.

G. Calvaruso and A. Zaeim, Geometric structures over four-dimensional generalized symmetric spaces, Mediterr. J. Math. 10 (2013), no. 2, 971–987. MR 3045690.

G. Calvaruso and A. Zaeim, A complete classification of Ricci and Yamabe solitons of non-reductive homogeneous 4-spaces, J. Geom. Phys. 80 (2014), 15–25. MR 3188790.

G. Calvaruso and A. Zaeim, Four-dimensional homogeneous Lorentzian manifolds, Monatsh. Math. 174 (2014), no. 3, 377–402. MR 3223494.

G. Calvaruso and A. Zaeim, Geometric structures over non-reductive homogeneous 4-spaces, Adv. Geom. 14 (2014), no. 2, 191–214. MR 3263422.

G. Calvaruso and A. Zaeim, Symmetries of Lorentzian three-manifolds with recurrent curvature, SIGMA Symmetry Integrability Geom. Methods Appl. 12 (2016), Paper No. 063, 12 pp. MR 3514944.

G. Calvaruso and A. Zaeim, On the symmetries of the Lorentzian oscillator group, Collect. Math. 68 (2017), no. 1, 51–67. MR 3591464.

G. Calvaruso and A. Zaeim, Conformal geometry of semi-direct extensions of the Heisenberg group, J. Math. Phys. Anal. Geom. 17 (2021), no. 4, 407–421. MR 4353406.

E. Calviño-Louzao, E. García-Río, I. Gutiérrez-Rodríguez, and R. Vázquez-Lorenzo, Conformal geometry of non-reductive four-dimensional homogeneous spaces, Math. Nachr. 290 (2017), no. 10, 1470–1490. MR 3672891.

J. Černý and O. Kowalski, Classification of generalized symmetric pseudo-Riemannian spaces of dimension $n≤4$, Tensor (N.S.) 38 (1982), 255–267. MR 0832656.

M. Chaichi and A. Zaeim, Locally homogeneous four-dimensional manifolds of signature $(2,2)$, Math. Phys. Anal. Geom. 16 (2013), no. 4, 345–361. MR 3133853.

B. De Leo and J. Van der Veken, Totally geodesic hypersurfaces of four-dimensional generalized symmetric spaces, Geom. Dedicata 159 (2012), 373–387. MR 2944538.

M. E. Fels and A. G. Renner, Non-reductive homogeneous pseudo-Riemannian manifolds of dimension four, Canad. J. Math. 58 (2006), no. 2, 282–311. MR 2209280.

P. M. Gadea and J. A. Oubiña, Homogeneous Lorentzian structures on the oscillator groups, Arch. Math. (Basel) 73 (1999), no. 4, 311–320. MR 1710084.

E. García-Río, P. B. Gilkey, and S. Nikčević, Homogeneity of Lorentzian three-manifolds with recurrent curvature, Math. Nachr. 287 (2014), no. 1, 32–47. MR 3153924.

A. R. Gover and P. Nurowski, Obstructions to conformally Einstein metrics in $n$ dimensions, J. Geom. Phys. 56 (2006), no. 3, 450–484. MR 2171895.

C. N. Kozameh, E. T. Newman, and K. P. Tod, Conformal Einstein spaces, Gen. Relativity Gravitation 17 (1985), no. 4, 343–352. MR 0788800.

W. Kühnel and H.-B. Rademacher, Conformal transformations of pseudo-Riemannian manifolds, in Recent Developments in Pseudo-Riemannian Geometry, 261–298, ESI Lect. Math. Phys, Eur. Math. Soc., Zürich, 2008. MR 2436234.

W. Kühnel and H.-B. Rademacher, Conformally Einstein spaces revisited, in Pure and Applied Differential Geometry PADGE 2012, 161–167, Shaker Verlag, Aachen, 2013.

B. O'Neill, Semi-Riemannian Geometry, Pure and Applied Mathematics, 103, Academic Press, New York, 1983. MR 0719023.

F. Tricerri and L. Vanhecke, Homogeneous Structures on Riemannian Manifolds, London Mathematical Society Lecture Note Series, 83, Cambridge Univ. Press, Cambridge, 1983. MR 0712664.

Downloads

Published

2023-05-29

Issue

Section

Article