Global attractors in the parametrized Hénon–Devaney map

Authors

  • Bladismir Leal Instituto de Ciencias Básicas, Universidad Técnica de Manabí, Av. José María Urbina, Portoviejo, Ecuador. Facultad de Ingeniería, Universidad Nacional de Chimborazo, Vía Guano km 1.5, Riobamba, Ecuador
  • Sergio Muñoz Faculdade de Tecnologia, Dpto. de Matemática, Física e Computa¸c˜ao, Universidade do Estado do Rio de Janeiro, Resende, Brasil

DOI:

https://doi.org/10.33044/revuma.2133

Abstract

Given two positive real numbers $a$ and $c$, we consider the (two-parameter) family of nonlinear mappings \[ F_{a,c}(x,y)=\left(ax+\frac{1}{y}, \, c y-\frac{c}{y}-a c x\right). \] $F_{1,1}$ is the classical Hénon–Devaney map. For a large region of parameters, we exhibit an invariant non-bounded closed set with fractal structure which is a global attractor. Our approach leads to an in-depth understanding of the Hénon–Devaney map and its perturbations.

Downloads

Download data is not yet available.

Author Biography

Bladismir Leal, Instituto de Ciencias Básicas, Universidad Técnica de Manabí, Av. José María Urbina, Portoviejo, Ecuador. Facultad de Ingeniería, Universidad Nacional de Chimborazo, Vía Guano km 1.5, Riobamba, Ecuador

Dpto de Matematicas Facultad de Ciencias. Agregado D.E.

References

R. L. Devaney, The baker transformation and a mapping associated to the restricted three-body problem, Comm. Math. Phys. 80 (1981), no. 4, 465–476. MR 0628505.

M. Hénon, Generating Families in the Restricted Three-Body Problem. II. Quantitative Study of Bifurcations, Lecture Notes in Physics. New Series m: Monographs, 65, Springer, Berlin, 2001. MR 1874416.

B. Leal, G. Mata, and S. Muñoz, Families of transitive maps on R with horizontal asymptotes, Rev. Un. Mat. Argentina 59 (2018), no. 2, 375–387. MR 3900279.

B. Leal and S. Muñoz, Hénon-Devaney like maps, Nonlinearity 34 (2021), no. 5, 2878–2896. MR 4260781.

B. Leal and S. Muñoz, Invariant Cantor sets in the parametrized Hénon-Devaney map, Dyn. Syst. 37 (2022), no. 1, 105–126. MR 4408079.

F. Lenarduzzi, Generalized Hénon-Devaney Maps of the Plane, PhD Thesis, IMPA, Rio de Janeiro, 2016.

F. Lenarduzzi, Recoding the classical Hénon-Devaney map, Discrete Contin. Dyn. Syst. 40 (2020), no. 7, 4073–4092. MR 4097535.

S. Muñoz, Robust transitivity of maps of the real line, Discrete Contin. Dyn. Syst. 35 (2015), no. 3, 1163–1177. MR 3277190.

Downloads

Published

2023-04-18

Issue

Section

Article