Sequential optimality conditions for optimization problems with additional abstract set constraints
DOI:
https://doi.org/10.33044/revuma.2260Abstract
The positive approximate Karush–Kuhn–Tucker sequential condition and the strict constraint qualification associated with this condition for general scalar problems with equality and inequality constraints have recently been introduced. In this paper, we extend them to optimization problems with additional abstract set constraints. We also present an extension of the approximate Karush–Kuhn–Tucker sequential condition and its related strict constraint qualification. Furthermore, we explore the relations between the new constraint qualification and other constraint qualifications known in the literature as Abadie, quasi-normality and the approximate Karush–Kuhn–Tucker regularity constraint qualification. Finally, we introduce an augmented Lagrangian method for solving the optimization problem with abstract set constraints and we show that it is possible to obtain global convergence under the new condition.
Downloads
References
J. Abadie, On the Kuhn-Tucker theorem, in Nonlinear Programming (NATO Summer School, Menton, 1964), North-Holland, Amsterdam, 1967, pp. 19–36. MR Zbl
P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on matrix manifolds, Princeton University Press, Princeton, NJ, 2008. DOI MR Zbl
R. Andreani, E. G. Birgin, J. M. Martínez, and M. L. Schuverdt, On augmented Lagrangian methods with general lower-level constraints, SIAM J. Optim. 18 no. 4 (2007), 1286–1309. DOI MR Zbl
R. Andreani, E. G. Birgin, J. M. Martínez, and M. L. Schuverdt, Augmented Lagrangian methods under the constant positive linear dependence constraint qualification, Math. Program. 111 no. 1-2, Ser. B (2008), 5–32. DOI MR Zbl
R. Andreani, N. S. Fazzio, M. L. Schuverdt, and L. D. Secchin, A sequential optimality condition related to the quasi-normality constraint qualification and its algorithmic consequences, SIAM J. Optim. 29 no. 1 (2019), 743–766. DOI MR Zbl
R. Andreani, W. Gómez, G. Haeser, L. M. Mito, and A. Ramos, On optimality conditions for nonlinear conic programming, Math. Oper. Res. 47 no. 3 (2022), 2160–2185. DOI MR Zbl
R. Andreani, G. Haeser, M. L. Schuverdt, L. D. Secchin, and P. J. S. Silva, On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees, Math. Program. Comput. 14 no. 1 (2022), 121–146. DOI MR Zbl
R. Andreani, G. Haeser, L. D. Secchin, and P. J. S. Silva, New sequential optimality conditions for mathematical programs with complementarity constraints and algorithmic consequences, SIAM J. Optim. 29 no. 4 (2019), 3201–3230. DOI MR Zbl
R. Andreani, G. Haeser, and J. M. Martínez, On sequential optimality conditions for smooth constrained optimization, Optimization 60 no. 5 (2011), 627–641. DOI MR Zbl
R. Andreani, G. Haeser, M. L. Schuverdt, and P. J. S. Silva, A relaxed constant positive linear dependence constraint qualification and applications, Math. Program. 135 no. 1-2, Ser. A (2012), 255–273. DOI MR Zbl
R. Andreani, J. M. Martínez, A. Ramos, and P. J. S. Silva, A cone-continuity constraint qualification and algorithmic consequences, SIAM J. Optim. 26 no. 1 (2016), 96–110. DOI MR Zbl
R. Andreani, J. M. Martinez, and M. L. Schuverdt, On the relation between constant positive linear dependence condition and quasinormality constraint qualification, J. Optim. Theory Appl. 125 no. 2 (2005), 473–485. DOI MR Zbl
R. Andreani, J. M. Martínez, and B. F. Svaiter, A new sequential optimality condition for constrained optimization and algorithmic consequences, SIAM J. Optim. 20 no. 6 (2010), 3533–3554. DOI MR Zbl
R. Andreani, A. Ramos, A. A. Ribeiro, L. D. Secchin, and A. R. Velazco, On the convergence of augmented Lagrangian strategies for nonlinear programming, IMA J. Numer. Anal. 42 no. 2 (2022), 1735–1765. DOI MR Zbl
R. Bergmann and R. Herzog, Intrinsic formulation of KKT conditions and constraint qualifications on smooth manifolds, SIAM J. Optim. 29 no. 4 (2019), 2423–2444. DOI MR Zbl
D. P. Bertsekas, Nonlinear programming, second ed., Athena Scientific, Belmont, MA, 1999. MR Zbl
D. P. Bertsekas, A. Nedić, and A. E. Ozdaglar, Convex analysis and optimization, Athena Scientific, Belmont, MA, 2003. MR Zbl
D. P. Bertsekas and A. E. Ozdaglar, Pseudonormality and a Lagrange multiplier theory for constrained optimization, J. Optim. Theory Appl. 114 no. 2 (2002), 287–343. DOI MR Zbl
E. G. Birgin and J. M. Martínez, A box-constrained optimization algorithm with negative curvature directions and spectral projected gradients, in Topics in numerical analysis, Comput. Suppl. 15, Springer, Vienna, 2001, pp. 49–60. DOI MR Zbl
E. G. Birgin and J. M. Martínez, Large-scale active-set box-constrained optimization method with spectral projected gradients, Comput. Optim. Appl. 23 no. 1 (2002), 101–125. DOI MR Zbl
E. G. Birgin and J. M. Martínez, Practical augmented Lagrangian methods for constrained optimization, Fundamentals of Algorithms 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2014. DOI MR Zbl
E. G. Birgin, J. M. Martínez, and M. Raydan, Nonmonotone spectral projected gradient methods on convex sets, SIAM J. Optim. 10 no. 4 (2000), 1196–1211. DOI MR Zbl
E. G. Birgin, J. M. Martínez, and M. Raydan, Algorithm 813: SPG – software for convex-constrained optimization, ACM Trans. Math. Softw. 27 no. 3 (2001), 340–349. DOI Zbl
E. G. Birgin, J. M. Martínez, and M. Raydan, Inexact spectral projected gradient methods on convex sets, IMA J. Numer. Anal. 23 no. 4 (2003), 539–559. DOI MR Zbl
E. G. Birgin, J. M. Martínez, and M. Raydan, Spectral projected gradient methods, in Encyclopedia of optimization, Springer, Boston, 2009, pp. 3652–3659. DOI
E. Börgens, C. Kanzow, P. Mehlitz, and G. Wachsmuth, New constraint qualifications for optimization problems in Banach spaces based on asymptotic KKT conditions, SIAM J. Optim. 30 no. 4 (2020), 2956–2982. DOI MR Zbl
L. F. Bueno, G. Haeser, F. Lara, and F. N. Rojas, An augmented Lagrangian method for quasi-equilibrium problems, Comput. Optim. Appl. 76 no. 3 (2020), 737–766. DOI MR Zbl
L. F. Bueno, G. Haeser, and F. N. Rojas, Optimality conditions and constraint qualifications for generalized Nash equilibrium problems and their practical implications, SIAM J. Optim. 29 no. 1 (2019), 31–54. DOI MR Zbl
J. Dutta, K. Deb, R. Tulshyan, and R. Arora, Approximate KKT points and a proximity measure for termination, J. Global Optim. 56 no. 4 (2013), 1463–1499. DOI MR Zbl
W. Fenchel, Convex cones, sets and functions, Logistic Project Report, Department of Mathematics, Princeton University, 1953. Zbl
M. L. Flegel, C. Kanzow, and J. V. Outrata, Optimality conditions for disjunctive programs with application to mathematical programs with equilibrium constraints, Set-Valued Anal. 15 no. 2 (2007), 139–162. DOI MR Zbl
G. Giorgi, B. Jiménez, and V. Novo, Approximate Karush–Kuhn–Tucker condition in multiobjective optimization, J. Optim. Theory Appl. 171 no. 1 (2016), 70–89. DOI MR Zbl
G. Haeser and M. L. Schuverdt, On approximate KKT condition and its extension to continuous variational inequalities, J. Optim. Theory Appl. 149 no. 3 (2011), 528–539. DOI MR Zbl
M. R. Hestenes, Calculus of variations and optimal control theory, John Wiley & Sons, New York-London-Sydney, 1966. MR Zbl
M. R. Hestenes, Optimization theory: The finite dimensional case, Pure and Applied Mathematics, John Wiley & Sons, New York, 1975. MR Zbl
C. Kanzow, D. Steck, and D. Wachsmuth, An augmented Lagrangian method for optimization problems in Banach spaces, SIAM J. Control Optim. 56 no. 1 (2018), 272–291. DOI MR Zbl
A. E. Ozdaglar and D. P. Bertsekas, The relation between pseudonormality and quasiregularity in constrained optimization, Optim. Methods Softw. 19 no. 5 (2004), 493–506. DOI MR Zbl
L. Qi and Z. Wei, On the constant positive linear dependence condition and its application to SQP methods, SIAM J. Optim. 10 no. 4 (2000), 963–981. DOI MR Zbl
A. Ramos, Two new weak constraint qualifications for mathematical programs with equilibrium constraints and applications, J. Optim. Theory Appl. 183 no. 2 (2019), 566–591. DOI MR Zbl
A. Ramos, Mathematical programs with equilibrium constraints: a sequential optimality condition, new constraint qualifications and algorithmic consequences, Optim. Methods Softw. 36 no. 1 (2021), 45–81. DOI MR Zbl
R. T. Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, NJ, 1970. MR Zbl
R. T. Rockafellar and R. J.-B. Wets, Variational analysis, Grundlehren der mathematischen Wissenschaften 317, Springer-Verlag, Berlin, 1998. DOI MR Zbl
N. V. Tuyen, Y.-B. Xiao, and T. Q. Son, On approximate KKT optimality conditions for cone-constrained vector optimization problems, J. Nonlinear Convex Anal. 21 no. 1 (2020), 105–117. MR Zbl
W. H. Yang, L.-H. Zhang, and R. Song, Optimality conditions for the nonlinear programming problems on Riemannian manifolds, Pac. J. Optim. 10 no. 2 (2014), 415–434. MR Zbl
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Nadia Soledad Fazzio, María Daniela Sánchez, María Laura Schuverdt
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. The Journal may retract the paper after publication if clear evidence is found that the findings are unreliable as a result of misconduct or honest error.