Convolution-factorable multilinear operators

Authors

  • Ezgi Erdoğan Department of Mathematics, Faculty of Science, Marmara University, 34722 Kadık¨oy, Istanbul, Turkey

DOI:

https://doi.org/10.33044/revuma.2356

Abstract

We study multilinear operators defined on topological products of Banach algebras of integrable functions and Banach left modules with convolution product. The main theorem of the paper presents a factorization for multilinear operators through convolution that implies the property known as zero product preservation. By using this factorization we investigate properties of multilinear operators including integral representations and we give applications related to orthogonally additive homogeneous polynomials and Hilbert–Schmidt operators.

Downloads

Download data is not yet available.

References

J. Alaminos, M. Brešar, J. Extremera, and A. R. Villena, Maps preserving zero products, Studia Math. 193 (2009), no. 2, 131–159. MR 2515516.

J. Alaminos, J. Extremera, M. L. C. Godoy, and A. R. Villena, Orthogonally additive polynomials on convolution algebras associated with a compact group, J. Math. Anal. Appl. 472 (2019), no. 1, 285–302. MR 3906374.

J. Alaminos, J. Extremera, and A. R. Villena, Orthogonality preserving linear maps on group algebras, Math. Proc. Cambridge Philos. Soc. 158 (2015), no. 3, 493–504. MR 3335424.

J. L. Arregui and O. Blasco, Convolution of three functions by means of bilinear maps and applications, Illinois J. Math. 43 (1999), no. 2, 264–280. MR 1703187.

R. G. Bartle, N. Dunford, and J. Schwartz, Weak compactness and vector measures, Canadian J. Math. 7 (1955), 289–305. MR 0070050.

Y. Benyamini, S. Lassalle, and J. Llavona, Homogeneous orthogonally additive polynomials on Banach lattices, Bull. London Math. Soc. 38 (2006), no. 3, 459–469. MR 2239041.

F. F. Bonsall and J. Duncan, Complete Normed Algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, 80, Springer, New York, 1973. MR 0423029.

K. Boulabiar and G. Buskes, Vector lattice powers: $f$-algebras and functional calculus, Comm. Algebra 34 (2006), no. 4, 1435–1442. MR 2224884.

G. Buskes and A. van Rooij, Almost $f$-algebras: commutativity and the Cauchy-Schwarz inequality, Positivity 4 (2000), no. 3, 227–231, 2000. MR 1797125.

G. Buskes and A. van Rooij, Squares of Riesz spaces, Rocky Mountain J. Math. 31 (2001), no. 1, 45–56. MR 1821367.

P. J. Cohen, Factorization in group algebras, Duke Math. J. 26 (1959), 199–205. MR 0104982.

J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, 43, Cambridge Univ. Press, Cambridge, 1995. MR 1342297.

J. Diestel and J. J. Uhl, Jr., Vector Measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, RI, 1977. MR 0453964.

E. Erdoğan, Factorization of multilinear operators defined on products of function spaces, Linear Multilinear Algebra 70 (2022), no. 2, 177–202. MR 4382812.

E. Erdoğan and Ö. Gök, Convolution factorability of bilinear maps and integral representations, Indag. Math. (N.S.) 29 (2018), no. 5, 1334–1349. MR 3853430.

E. Erdoğan, E. A. Sánchez Pérez, and Ö. Gök, Product factorability of integral bilinear operators on Banach function spaces, Positivity 23 (2019), no. 3, 671–696. MR 3977590.

E. Hewitt and K. A. Ross, Abstract Harmonic Analysis. Vol. II, Die Grundlehren der mathematischen Wissenschaften, 152, Springer, New York, 1970. MR 0262773.

A. Ibort, P. Linares, and J. G. Llavona, A representation theorem for orthogonally additive polynomials on Riesz spaces, Rev. Mat. Complut. 25 (2012), no. 1, 21–30. MR 2876914.

Y. Katznelson, An Introduction to Harmonic Analysis, third edition, Cambridge Mathematical Library, Cambridge Univ. Press, Cambridge, 2004. MR 2039503.

H. König, Eigenvalue Distribution of Compact Operators, Operator Theory: Advances and Applications, 16, Birkhäuser Verlag, Basel, 1986. MR 0889455.

G. Köthe, Topological Vector Spaces. II, Grundlehren der mathematischen Wissenschaften, 237, Springer, New York, 1979. MR 0551623.

J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete, 97, Springer, Berlin, 1979. MR 0540367.

S. Okada, W. J. Ricker, and E. A. Sánchez Pérez, Optimal Domain and Integral Extension of Operators, Operator Theory: Advances and Applications, 180, Birkhäuser Verlag, Basel, 2008. MR 2418751.

D. Pérez-García and I. Villanueva, Orthogonally additive polynomials on spaces of continuous functions, J. Math. Anal. Appl. 306 (2005), no. 1, 97–105. MR 2132891.

K. Sundaresan, Geometry of spaces of homogeneous polynomials on Banach lattices, in Applied Geometry and Discrete Mathematics, 571–586, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 4, American Mathematical Society, Providence, RI, 1991. MR 1116377.

Downloads

Published

2023-05-12

Issue

Section

Article