Prime-generating quadratic polynomials
DOI:
https://doi.org/10.33044/revuma.2571Abstract
Let $a,b,c$ be integers. We provide a necessary condition for the function $|ax^2 + bx + c|$ to generate only primes for consecutive integers. We then apply this criterion to give sufficient conditions for the real quadratic field $\mathcal{K}=\mathbb{Q}(\sqrt{d})$, $d\in\mathbb{N}$, to have class number one, in terms of prime-producing quadratic polynomials.
Downloads
References
Ş. Alaca and K. S. Williams, Introductory Algebraic Number Theory, Cambridge Univ. Press, Cambridge, 2004. MR 2031707.
D. Byeon and J. Lee, A complete determination of Rabinowitsch polynomials, J. Number Theory 131 (2011), no. 8, 1513–1529. MR 2793892.
R. A. Mollin, Quadratics, CRC Press series on discrete mathematics and its applications, CRC Press, Boca Raton, FL, 1996. MR 1383823.
R. A. Mollin, Prime-producing quadratics, Amer. Math. Monthly 104 (1997), no. 6, 529–544. MR 1453656.
R. A. Mollin, The Rabinowitsch–Mollin–Williams theorem revisited, Int. J. Math. Math. Sci. 2009, Art. ID 819068, 14 pp. MR 2539701.
R. A. Mollin and H. C. Williams, Prime producing quadratic polynomials and real quadratic fields of class number one, in Théorie des nombres (Quebec, 1987), 654–663, De Gruyter, Berlin, 1989. MR 1024594.
R. A. Mollin and H. C. Williams, Class number one for real quadratic fields, continued fractions and reduced ideals, in Number Theory and Applications (Banff, 1988), 481–496, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 265, Kluwer, Dordrecht, 1989. MR 1123091.
V. J. Ramírez, A new proof of the unique factorization of $Z[(1+sqrt(-d))/2]$ for $d=3,7,11,19,43,67,163$, Rev. Colombiana Mat. 50 (2016), no. 2, 139–143. MR 3605643.
V. J. Ramírez, A simple criterion for the class number of a quadratic number field to be one, Int. J. Number Theory 15 (2019), no. 9, 1857–1862. MR 4015517.
P. Ribenboim, The Little Book of Bigger Primes, second edition, Springer, New York, 2004. MR 2028675.
P. G. Walsh, A note on class number one criteria of Širola for real quadratic fields, Glas. Mat. Ser. III 40(60) (2005), no. 1, 21–27. MR 2195857.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Víctor Julio Ramírez Viñas
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. The Journal may retract the paper after publication if clear evidence is found that the findings are unreliable as a result of misconduct or honest error.