The full group of isometries of some compact Lie groups endowed with a bi-invariant metric

Authors

  • Alberto Dolcetti Dipartimento di Matematica e Informatica, Universit`a degli Studi di Firenze, Viale Morgagni 67/a, 50134 Firenze, Italia https://orcid.org/0000-0001-9791-8122
  • Donato Pertici Dipartimento di Matematica e Informatica, Universit`a degli Studi di Firenze, Viale Morgagni 67/a, 50134 Firenze, Italia https://orcid.org/0000-0003-4667-9568

DOI:

https://doi.org/10.33044/revuma.2737

Abstract

We describe the full group of isometries of absolutely simple, compact, connected real Lie groups, of $S\mathcal{O}(4)$, and of $U(n)$, endowed with suitable bi-invariant Riemannian metrics.

Downloads

Download data is not yet available.

References

Killing form, in Encyclopedia of Mathematics. Available at http://encyclopediaofmath.org/index.php?title=Killing_form&oldid=12372.

Lie algebra, semi-simple, in Encyclopedia of Mathematics. Available at http://encyclopediaofmath.org/index.php?title=Lie_algebra,_semi-simple&oldid=44225.

T. Abe, S. Akiyama, and O. Hatori, Isometries of the special orthogonal group, Linear Algebra Appl. 439 no. 1 (2013), 174–188.  DOI  MR  Zbl

M. M. Alexandrino and R. G. Bettiol, Lie Groups and Geometric Aspects of Isometric Actions, Springer, Cham, 2015.  DOI  MR  Zbl

A. Dolcetti and D. Pertici, Some differential properties of $GL_n(ℝ)$ with the trace metric, Riv. Mat. Univ. Parma (N.S.) 6 no. 2 (2015), 267–286.  MR  Zbl

A. Dolcetti and D. Pertici, Skew symmetric logarithms and geodesics on $O_n(ℝ)$, Adv. Geom. 18 no. 4 (2018), 495–507.  DOI  MR  Zbl

A. Dolcetti and D. Pertici, Differential properties of spaces of symmetric real matrices, Rend. Semin. Mat. Univ. Politec. Torino 77 no. 1 (2019), 25–43.  MR  Zbl

A. Dolcetti and D. Pertici, Real square roots of matrices: differential properties in semi-simple, symmetric and orthogonal cases, Riv. Mat. Univ. Parma (N.S.) 11 no. 2 (2020), 315–333.  MR  Zbl

A. Dolcetti and D. Pertici, Elliptic isometries of the manifold of positive definite real matrices with the trace metric, Rend. Circ. Mat. Palermo (2) 70 no. 1 (2021), 575–592.  DOI  MR  Zbl

B. Hall, Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, second ed., Graduate Texts in Mathematics 222, Springer, Cham, 2015.  DOI  MR  Zbl

O. Hatori and L. Molnár, Isometries of the unitary group, Proc. Amer. Math. Soc. 140 no. 6 (2012), 2127–2140.  DOI  MR  Zbl

S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Pure and Applied Mathematics 80, Academic Press, New York-London, 1978.  MR  Zbl

M. Hunt, G. Mullineux, R. J. Cripps, and B. Cross, Characterizing isoclinic matrices and the Cayley factorization, Proc. Institution Mechanical Engineers, Part C: J. Mech. Eng. Sci. 230 no. 18 (2016), 3267–3273.  DOI

A. W. Knapp, Lie Groups Beyond an Introduction, second ed., Progress in Mathematics 140, Birkhäuser Boston, Boston, MA, 2002.  MR  Zbl

J. E. Mebius, A matrix-based proof of the quaternion representation theorem for four-dimensional rotations, 2005. arXiv:math/0501249 [math.GM].

B. O'Neill, Semi-Riemannian Geometry, Pure and Applied Mathematics 103, Academic Press, New York, 1983.  MR  Zbl

A. L. Onishchik, The group of isometries of a compact Riemannian homogeneous space, in Differential Geometry and Its Applications (Eger, 1989), Colloq. Math. Soc. János Bolyai 56, North-Holland, Amsterdam, 1992, pp. 597–616.  MR  Zbl

A. Perez-Gracia and F. Thomas, On Cayley's factorization of 4D rotations and applications, Adv. Appl. Clifford Algebr. 27 no. 1 (2017), 523–538.  DOI  MR  Zbl

G. de Rham, Sur la reductibilité d'un espace de Riemann, Comment. Math. Helv. 26 (1952), 328–344.  DOI  MR  Zbl

M. R. Sepanski, Compact Lie Groups, Graduate Texts in Mathematics 235, Springer, New York, 2007.  DOI  MR  Zbl

K. Shankar, Isometry groups of homogeneous spaces with positive sectional curvature, Differential Geom. Appl. 14 no. 1 (2001), 57–78.  DOI  MR  Zbl

F. Thomas, Approaching dual quaternions from matrix algebra, IEEE Trans. Robotics 30 no. 5 (2014), 1037–1048.  DOI

F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Graduate Texts in Mathematics 94, Springer-Verlag, New York-Berlin, 1983.  MR  Zbl

Downloads

Published

2023-10-23

Issue

Section

Article