Some inequalities for Lagrangian submanifolds in holomorphic statistical manifolds of constant holomorphic sectional curvature

Authors

  • Yan Jiang School of Mathematics and Statistics, Anhui Normal University, Anhui 241000, China
  • Dandan Cai School of Mathematics and Statistics, Anhui Normal University, Anhui 241000, China
  • Liang Zhang School of Mathematics and Statistics, Anhui Normal University, Anhui 241000, China

DOI:

https://doi.org/10.33044/revuma.2812

Abstract

We obtain two types of inequalities for Lagrangian submanifolds in holomorphic statistical manifolds of constant holomorphic sectional curvature. One relates the Oprea invariant to the mean curvature, the other relates the Chen invariant to the mean curvature. Our results generalize the corresponding inequalities for Lagrangian submanifolds in complex space forms.

Downloads

Download data is not yet available.

References

S. Amari, Differential-Geometrical Methods in Statistics, Lecture Notes in Statistics 28, Springer-Verlag, New York, 1985.  DOI  MR  Zbl

M. E. Aydin, A. Mihai, and I. Mihai, Some inequalities on submanifolds in statistical manifolds of constant curvature, Filomat 29 no. 3 (2015), 465–477.  DOI  MR  Zbl

M. E. Aydin, A. Mihai, and I. Mihai, Generalized Wintgen inequality for statistical submanifolds in statistical manifolds of constant curvature, Bull. Math. Sci. 7 no. 1 (2017), 155–166.  DOI  MR  Zbl

B.-Y. Chen, A Riemannian invariant and its applications to submanifold theory, Results Math. 27 no. 1-2 (1995), 17–26.  DOI  MR  Zbl

B.-Y. Chen, Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions, Glasg. Math. J. 41 no. 1 (1999), 33–41.  DOI  MR  Zbl

B.-Y. Chen, Some new obstructions to minimal and Lagrangian isometric immersions, Japan. J. Math. (N.S.) 26 no. 1 (2000), 105–127.  DOI  MR  Zbl

B.-Y. Chen and F. Dillen, Optimal general inequalities for Lagrangian submanifolds in complex space forms, J. Math. Anal. Appl. 379 no. 1 (2011), 229–239.  DOI  MR  Zbl

S. Decu, S. Haesen, and L. Verstraelen, Optimal inequalities involving Casorati curvatures, Bull. Transilv. Univ. Braşov Ser. B (N.S.) 14(49), suppl. (2007), 85–93.  MR  Zbl

H. Furuhata, Hypersurfaces in statistical manifolds, Differential Geom. Appl. 27 no. 3 (2009), 420–429.  DOI  MR  Zbl

H. Furuhata and I. Hasegawa, Submanifold theory in holomorphic statistical manifolds, in Geometry of Cauchy-Riemann Submanifolds, Springer, Singapore, 2016, pp. 179–215.  DOI  MR  Zbl

H. Furuhata, I. Hasegawa, Y. Okuyama, K. Sato, and M. H. Shahid, Sasakian statistical manifolds, J. Geom. Phys. 117 (2017), 179–186.  DOI  MR  Zbl

T. Kurose, Geometry of statistical manifolds, in Mathematics in the 21st Century, Nippon Hyoron Sha, 2004, pp. 34–43.

C. W. Lee, D. W. Yoon, and J. W. Lee, A pinching theorem for statistical manifolds with Casorati curvatures, J. Nonlinear Sci. Appl. 10 no. 9 (2017), 4908–4914.  DOI  MR  Zbl

H. Matsuzoe, Statistical manifolds and affine differential geometry, in Probabilistic Approach to Geometry, Adv. Stud. Pure Math. 57, Math. Soc. Japan, Tokyo, 2010, pp. 303–321.  DOI  MR  Zbl

C. R. Min, S. O. Choe, and Y. H. An, Statistical immersions between statistical manifolds of constant curvature, Glob. J. Adv. Res. Class. Mod. Geom. 3 no. 2 (2014), 66–75.  MR Available at https://web.archive.org/web/20200716233636/https://geometry-math-journal.ro/pdf/Volume3-Issue2/3.pdf.

T. Oprea, Generalization of Chen's inequality, Algebras Groups Geom. 23 no. 1 (2006), 93–103.  MR  Zbl

T. Oprea, Chen's inequality in the Lagrangian case, Colloq. Math. 108 no. 1 (2007), 163–169.  DOI  MR  Zbl

T. Oprea, On a Riemannian invariant of Chen type, Rocky Mountain J. Math. 38 no. 2 (2008), 567–581.  DOI  MR  Zbl

H. Shima and K. Yagi, Geometry of Hessian manifolds, Differential Geom. Appl. 7 no. 3 (1997), 277–290.  DOI  MR  Zbl

A. N. Siddiqui and M. H. Shahid, On totally real statistical submanifolds, Filomat 32 no. 13 (2018), 4473–4483.  DOI  MR  Zbl

P. W. Vos, Fundamental equations for statistical submanifolds with applications to the Bartlett correction, Ann. Inst. Statist. Math. 41 no. 3 (1989), 429–450.  DOI  MR  Zbl

K. Yano and M. Kon, CR Submanifolds of Kaehlerian and Sasakian Manifolds, Progress in Mathematics 30, Birkhäuser, Boston, MA, 1983.  MR  Zbl

Downloads

Published

2023-12-29

Issue

Section

Article