Stable quasi-periodic orbits of a class of quintic Duffing systems

Authors

  • Homero G. Díaz-Marín Facultad de Ciencias F´ısico-Matem´aticas, Universidad Michoacana, Ciudad Universitaria, C.P. 58040, Morelia, Michoacán, México
  • Osvaldo Osuna Instituto de F´ısica y Matem´aticas, Universidad Michoacana, Ciudad Universitaria, C.P. 58040, Morelia, Michoacán, México

DOI:

https://doi.org/10.33044/revuma.2829

Abstract

For a Duffing-type oscillator with constant damping, a unique odd nonlinearity, and time-dependent coefficients which are quasi-periodic, we prove existence and stability conditions of quasi-periodic solutions. We thus generalize some results for periodic coefficients and quintic nonlinearity. We use the classical theory of perturbations and present some numerical examples for the quintic case to illustrate our findings.

Downloads

Download data is not yet available.

References

A. Beléndez, T. Beléndez, F. J. Martínez, C. Pascual, M. L. Alvarez, and E. Arribas, Exact solution for the unforced Duffing oscillator with cubic and quintic nonlinearities, Nonlinear Dynam. 86 (2016), no. 3, 1687–1700. MR 3562445.

M. Belhaq and M. Houssni, Quasi-periodic oscillations, chaos and suppression of chaos in a nonlinear oscillator driven by parametric and external excitations, Nonlinear Dynam. 18 (1999), no. 1, 1–24. MR 1676699.

R. Benterki and J. Llibre, Periodic solutions of the Duffing differential equation revisited via the averaging theory, J. Nonlinear Modeling Anal. 1 (2019), no. 1, 11–26. https://doi.org/10.12150/jnma.2019.11.

A. S. Besicovitch, Almost Periodic Functions, Cambridge University Press, 1932.

N. Bogolyubov, O Nekotoryh Statističeskih Metodah v Matematičeskoĭ Fizike [On Some Statistical Methods in Mathematical Physics], Akademiya Nauk Ukrainskoĭ SSR, 1945. MR 0016575.

H. Bohr, Almost Periodic Functions, Chelsea Publishing Co., New York, 1947. MR 0020163.

C. Corduneanu, Almost Periodic Functions, second edition, Chelsea Publishing Co., New York, 1989.

P. G. Estévez, S. Kuru, J. Negro, and L. M. Nieto, Solutions of a class of Duffing oscillators with variable coefficients, Internat. J. Theoret. Phys. 50 (2011), no. 7, 2046–2056. MR 2810761.

Q. Fan, A. Y. T. Leung, and Y. Y. Lee, Periodic and quasi-periodic responses of Van der Pol–Mathieu system subject to various excitations, Int. J. Nonlinear Sci. Numer. Simul. 17 (2016), no. 1, 29–40. MR 3461750.

J. K. Hale, Ordinary Differential Equations, second edition, Dover, New York, 2009.

J. Llibre and L. A. Roberto, On the periodic solutions of a class of Duffing differential equations, Discrete Contin. Dyn. Syst. 33 (2013), no. 1, 277–282. MR 2972959.

L. M. Perko, Higher order averaging and related methods for perturbed periodic and quasi-periodic systems, SIAM J. Appl. Math. 17 (1969), 698–724. MR 0257479.

J. A. Sanders, F. Verhulst, and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems, second edition, Applied Mathematical Sciences, 59, Springer, New York, 2007. MR 2316999.

F. Veerman and F. Verhulst, Quasiperiodic phenomena in the Van der Pol–Mathieu equation, J. Sound Vib. 326 (2009), no. 1-2, 314–320. https://doi.org/10.1016/j.jsv.2009.04.040.

L. Yang, Recent advances on determining the number of real roots of parametric polynomials, J. Symbolic Comput. 28 (1999), no. 1-2, 225–242. MR 1709904.

W. Zeng, Almost periodic solutions for nonlinear Duffing equations, Acta Math. Sinica (N.S.) 13 (1997), no. 3, 373–380. MR 1633914.

Downloads

Published

2023-06-28

Issue

Section

Article