Stable quasi-periodic orbits of a class of quintic Duffing systems
DOI:
https://doi.org/10.33044/revuma.2829Abstract
For a Duffing-type oscillator with constant damping, a unique odd nonlinearity, and time-dependent coefficients which are quasi-periodic, we prove existence and stability conditions of quasi-periodic solutions. We thus generalize some results for periodic coefficients and quintic nonlinearity. We use the classical theory of perturbations and present some numerical examples for the quintic case to illustrate our findings.
Downloads
References
A. Beléndez, T. Beléndez, F. J. Martínez, C. Pascual, M. L. Alvarez, and E. Arribas, Exact solution for the unforced Duffing oscillator with cubic and quintic nonlinearities, Nonlinear Dynam. 86 (2016), no. 3, 1687–1700. MR 3562445.
M. Belhaq and M. Houssni, Quasi-periodic oscillations, chaos and suppression of chaos in a nonlinear oscillator driven by parametric and external excitations, Nonlinear Dynam. 18 (1999), no. 1, 1–24. MR 1676699.
R. Benterki and J. Llibre, Periodic solutions of the Duffing differential equation revisited via the averaging theory, J. Nonlinear Modeling Anal. 1 (2019), no. 1, 11–26. https://doi.org/10.12150/jnma.2019.11.
A. S. Besicovitch, Almost Periodic Functions, Cambridge University Press, 1932.
N. Bogolyubov, O Nekotoryh Statističeskih Metodah v Matematičeskoĭ Fizike [On Some Statistical Methods in Mathematical Physics], Akademiya Nauk Ukrainskoĭ SSR, 1945. MR 0016575.
H. Bohr, Almost Periodic Functions, Chelsea Publishing Co., New York, 1947. MR 0020163.
C. Corduneanu, Almost Periodic Functions, second edition, Chelsea Publishing Co., New York, 1989.
P. G. Estévez, S. Kuru, J. Negro, and L. M. Nieto, Solutions of a class of Duffing oscillators with variable coefficients, Internat. J. Theoret. Phys. 50 (2011), no. 7, 2046–2056. MR 2810761.
Q. Fan, A. Y. T. Leung, and Y. Y. Lee, Periodic and quasi-periodic responses of Van der Pol–Mathieu system subject to various excitations, Int. J. Nonlinear Sci. Numer. Simul. 17 (2016), no. 1, 29–40. MR 3461750.
J. K. Hale, Ordinary Differential Equations, second edition, Dover, New York, 2009.
J. Llibre and L. A. Roberto, On the periodic solutions of a class of Duffing differential equations, Discrete Contin. Dyn. Syst. 33 (2013), no. 1, 277–282. MR 2972959.
L. M. Perko, Higher order averaging and related methods for perturbed periodic and quasi-periodic systems, SIAM J. Appl. Math. 17 (1969), 698–724. MR 0257479.
J. A. Sanders, F. Verhulst, and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems, second edition, Applied Mathematical Sciences, 59, Springer, New York, 2007. MR 2316999.
F. Veerman and F. Verhulst, Quasiperiodic phenomena in the Van der Pol–Mathieu equation, J. Sound Vib. 326 (2009), no. 1-2, 314–320. https://doi.org/10.1016/j.jsv.2009.04.040.
L. Yang, Recent advances on determining the number of real roots of parametric polynomials, J. Symbolic Comput. 28 (1999), no. 1-2, 225–242. MR 1709904.
W. Zeng, Almost periodic solutions for nonlinear Duffing equations, Acta Math. Sinica (N.S.) 13 (1997), no. 3, 373–380. MR 1633914.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Homero G. Díaz-Marín, Osvaldo Osuna
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. The Journal may retract the paper after publication if clear evidence is found that the findings are unreliable as a result of misconduct or honest error.