On power integral bases of certain pure number fields defined by $x^{84}-m$
DOI:
https://doi.org/10.33044/revuma.2836Abstract
Let $K=\mathbb{Q}(\alpha)$ be a pure number field generated by a complex root $\alpha$ of a monic irreducible polynomial $F(x) = x^{84}-m$, with $m\neq\pm 1$ a square-free integer. In this paper, we study the monogeneity of $K$. We prove that if $m \not\equiv 1\pmod{4}$, $m \not\equiv \pm 1\pmod{9}$, and $\overline{m} \not\in \{\pm \overline{1},\pm \overline{18}, \pm \overline{19}\} \pmod{49}$, then $K$ is monogenic. But if $m \equiv 1\pmod{4}$ or $m \equiv\pm 1\pmod{9}$ or $m \equiv 1 \pmod{49}$, then $K$ is not monogenic. Some illustrating examples are given.
Downloads
References
S. Ahmad, T. Nakahara, and A. Hameed, On certain pure sextic fields related to a problem of Hasse, Internat. J. Algebra Comput. 26 (2016), no. 3, 577–583. MR 3506350.
S. Ahmad, T. Nakahara, and S. M. Husnine, Power integral bases for certain pure sextic fields, Int. J. Number Theory 10 (2014), no. 8, 2257–2265. MR 3273484.
M. Bauer, Über die auß erwesentlichen Diskriminantenteiler einer Gattung, Math. Ann. 64 (1907), no. 4, 573–576. MR 1511458.
A. Bérczes, J.-H. Evertse, and K. Győry, Multiply monogenic orders, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12 (2013), no. 2, 467–497. MR 3114010.
H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics, 138, Springer, Berlin, 1993. MR 1228206.
R. Dedekind, Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen, Göttingen Abh. 23 (1878), 1–23.
L. El Fadil, Computation of a power integral basis of a pure cubic number field, Int. J. Contemp. Math. Sci. 2 (2007), no. 13-16, 601–606. MR 2355834.
L. El Fadil, On Newton polygons techniques and factorization of polynomials over Henselian fields, J. Algebra Appl. 19 (2020), no. 10, 2050188, 9 pp. MR 4140128.
L. El Fadil, On power integral bases for certain pure number fields defined by $x^{24} -m$, Studia Sci. Math. Hungar. 57 (2020), no. 3, 397–407. MR 4188148.
L. El Fadil, On power integral bases for certain pure number fields defined by $x^{36}-m$, Studia Sci. Math. Hungar. 58 (2021), no. 3, 371–380. https://doi.org/10.1556/012.2021.58.3.1506.
L. El Fadil, On power integral bases for certain pure sextic fields, Bol. Soc. Parana. Mat. (3) 40 (2022), 7 pp. MR 4416656.
L. El Fadil, On power integral bases for certain pure number fields, Publ. Math. Debrecen 100 (2022), no. 1-2, 219–231. MR 4389255.
L. El Fadil, On power integral bases for certain pure number fields defined by $x^{18}-m$, Comment. Math. Univ. Carolin. 63 (2022), no. 1, 11–19. MR 4445734.
L. El Fadil, On monogenity of certain pure number fields defined by $x^{20}-m$, São Paulo J. Math. Sci. 16 (2022), no. 2, 1063–1071. MR4515947.
L. El Fadil, On power integral bases of certain pure number fields defined by $x^{3^r· 7^s}-m$, Colloq. Math. 169 (2022), no. 2, 307–317. MR 4443656.
L. El Fadil, J. Montes, and E. Nart, Newton polygons and $p$-integral bases of quartic number fields, J. Algebra Appl. 11 (2012), no. 4, 1250073, 33 pp. MR 2959422.
T. Funakura, On integral bases of pure quartic fields, Math. J. Okayama Univ. 26 (1984), 27–41. MR 0779772.
I. Gaál, Power integer bases in algebraic number fields, Ann. Univ. Sci. Budapest. Sect. Comput. 18 (1999), 61–87. MR 2118246.
I. Gaál, Diophantine Equations and Power Integral Bases, second edition, Birkhäuser, Cham, 2019. MR 3970246.
I. Gaál, P. Olajos, and M. E. Pohst, Power integral bases in orders of composite fields, Experiment. Math. 11 (2002), no. 1, 87–90. MR 1960303.
I. Gaál and L. Remete, Binomial Thue equations and power integral bases in pure quartic fields, JP J. Algebra Number Theory Appl. 32 (2014), no. 1, 49–61.
I. Gaál and L. Remete, Integral bases and monogenity of pure fields, J. Number Theory 173 (2017), 129–146. MR 3581912.
T. A. Gassert, A note on the monogeneity of power maps, Albanian J. Math. 11 (2017), no. 1, 3–12. MR 3659215.
J. Guàrdia, J. Montes, and E. Nart, Newton polygons of higher order in algebraic number theory, Trans. Amer. Math. Soc. 364 (2012), no. 1, 361–416. MR 2833586.
A. Hameed and T. Nakahara, Integral bases and relative monogenity of pure octic fields, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 58(106) (2015), no. 4, 419–433. MR 3443598.
H. Hasse, Zahlentheorie, zweite erweiterte Auflage, Akademie-Verlag, Berlin, 1963. MR 0153659.
K. Hensel, Theorie der algebraischen Zahlen, B. G. Teubner, Leipzig, Berlin, 1908.
J. Montes and E. Nart, On a theorem of Ore, J. Algebra 146 (1992), no. 2, 318–334. MR 1152908.
Y. Motoda, T. Nakahara, and S. I. A. Shah, On a problem of Hasse for certain imaginary abelian fields, J. Number Theory 96 (2002), no. 2, 326–334. MR 1932459.
W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, third edition, Springer Monographs in Mathematics, Springer, Berlin, 2004. MR 2078267.
J. Neukirch, Algebraic Number Theory, Grundlehren der mathematischen Wissenschaften, 322, Springer, Berlin, 1999. MR 1697859.
O. Ore, Newtonsche Polygone in der Theorie der algebraischen Körper, Math. Ann. 99 (1928), no. 1, 84–117. MR 1512440.
A. Pethő and M. E. Pohst, On the indices of multiquadratic number fields, Acta Arith. 153 (2012), no. 4, 393–414. MR 2925379.
H. Smith, The monogeneity of radical extensions, Acta Arith. 198 (2021), no. 3, 313–327. MR 4232416.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Lhoussain El Fadil, Mohamed Faris
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. The Journal may retract the paper after publication if clear evidence is found that the findings are unreliable as a result of misconduct or honest error.