Weighted mixed weak-type inequalities for multilinear fractional operators
DOI:
https://doi.org/10.33044/revuma.3017Abstract
The aim of this paper is to obtain mixed weak-type inequalities for multilinear fractional operators, extending results by Berra, Carena and Pradolini [Math. Anal. Appl. 479 (2019)]. We prove that, under certain conditions on the weights, there exists a constant $C$ such that \[ \Bigg\| \frac{\mathcal{G}_{\alpha}(\vec{f}\,)}{v}\Bigg\|_{L^{q, \infty}(\nu v^q)} \leq C \prod_{i=1}^m{\|f_i\|_{L^1(u_i)}}, \] where $\mathcal{G}_{\alpha}(\vec{f}\,)$ is the multilinear maximal function $\mathcal{M}_{\alpha}(\vec{f}\,)$ introduced by Moen [Collect. Math. 60 (2009)] or the multilineal fractional integral $\mathcal{I}_{\alpha}(\vec{f}\,)$. As an application, a vector-valued weighted mixed inequality for $\mathcal{I}_{\alpha}(\vec{f}\,)$ is provided.
Downloads
References
F. Berra, M. Carena, and G. Pradolini, Mixed weak estimates of Sawyer type for commutators of generalized singular integrals and related operators, Michigan Math. J. 68 no. 3 (2019), 527–564. DOI MR Zbl
F. Berra, M. Carena, and G. Pradolini, Mixed weak estimates of Sawyer type for fractional integrals and some related operators, J. Math. Anal. Appl. 479 no. 2 (2019), 1490–1505. DOI MR Zbl
F. Bombal, D. Pérez-García, and I. Villanueva, Multilinear extensions of Grothendieck's theorem, Q. J. Math. 55 no. 4 (2004), 441–450. DOI MR Zbl
D. Carando, M. Mazzitelli, and S. Ombrosi, Multilinear Marcinkiewicz-Zygmund inequalities, J. Fourier Anal. Appl. 25 no. 1 (2019), 51–85. DOI MR Zbl
D. Cruz-Uribe, J. M. Martell, and C. Pérez, Weighted weak-type inequalities and a conjecture of Sawyer, Int. Math. Res. Not. no. 30 (2005), 1849–1871. DOI MR Zbl
C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115. DOI MR Zbl
L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Upper Saddle River, NJ, 2004. MR Zbl
L. Grafakos and J. M. Martell, Extrapolation of weighted norm inequalities for multivariable operators and applications, J. Geom. Anal. 14 no. 1 (2004), 19–46. DOI MR Zbl
A. K. Lerner, S. Ombrosi, and C. Pérez, Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-Wheeden, J. Fourier Anal. Appl. 15 no. 3 (2009), 394–403. DOI MR Zbl
A. K. Lerner, S. Ombrosi, C. Pérez, R. H. Torres, and R. Trujillo-González, New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, Adv. Math. 220 no. 4 (2009), 1222–1264. DOI MR Zbl
K. Li, J. M. Martell, and S. Ombrosi, Extrapolation for multilinear Muckenhoupt classes and applications, Adv. Math. 373 (2020), 107286, 43 pp. DOI MR Zbl
K. Li, S. Ombrosi, and C. Pérez, Proof of an extension of E. Sawyer's conjecture about weighted mixed weak-type estimates, Math. Ann. 374 no. 1-2 (2019), 907–929. DOI MR Zbl
K. Li, S. J. Ombrosi, and M. Belén Picardi, Weighted mixed weak-type inequalities for multilinear operators, Studia Math. 244 no. 2 (2019), 203–215. DOI MR Zbl
K. Moen, Weighted inequalities for multilinear fractional integral operators, Collect. Math. 60 no. 2 (2009), 213–238. DOI MR Zbl
B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. DOI MR Zbl
S. Ombrosi and C. Pérez, Mixed weak type estimates: examples and counterexamples related to a problem of E. Sawyer, Colloq. Math. 145 no. 2 (2016), 259–272. DOI MR Zbl
S. Ombrosi, C. Pérez, and J. Recchi, Quantitative weighted mixed weak-type inequalities for classical operators, Indiana Univ. Math. J. 65 no. 2 (2016), 615–640. DOI MR Zbl
E. Sawyer, A weighted weak type inequality for the maximal function, Proc. Amer. Math. Soc. 93 no. 4 (1985), 610–614. DOI MR Zbl
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, NJ, 1970. MR Zbl
Downloads
Published
Issue
Section
License
Copyright (c) 2023 María Belén Picardi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. The Journal may retract the paper after publication if clear evidence is found that the findings are unreliable as a result of misconduct or honest error.