On Hopf algebras over basic Hopf algebras of dimension 24
DOI:
https://doi.org/10.33044/revuma.3018Abstract
We determine finite-dimensional Hopf algebras over an algebraically closed field of characteristic zero, whose Hopf coradical is isomorphic to a non-pointed basic Hopf algebra of dimension 24 and the infinitesimal braidings are indecomposable objects. In particular, we obtain families of new finite-dimensional Hopf algebras without the dual Chevalley property.
Downloads
References
N. Andruskiewitsch and I. Angiono, On finite dimensional Nichols algebras of diagonal type, Bull. Math. Sci. 7 no. 3 (2017), 353–573. DOI MR Zbl
N. Andruskiewitsch and I. Angiono, On Nichols algebras over basic Hopf algebras, Math. Z. 296 no. 3-4 (2020), 1429–1469. DOI MR Zbl
N. Andruskiewitsch and M. Beattie, Irreducible representations of liftings of quantum planes, in Lie Theory and Its Applications in Physics V, World Scientific, River Edge, NJ, 2004, pp. 414–423. DOI MR Zbl
N. Andruskiewitsch and J. Cuadra, On the structure of (co-Frobenius) Hopf algebras, J. Noncommut. Geom. 7 no. 1 (2013), 83–104. DOI MR Zbl
N. Andruskiewitsch and J. M. J. Giraldi, Nichols algebras that are quantum planes, Linear Multilinear Algebra 66 no. 5 (2018), 961–991. DOI MR Zbl
N. Andruskiewitsch and M. Graña, Braided Hopf algebras over non abelian finite groups, Bol. Acad. Nac. Cienc. (Córdoba) 63 (1999), 45–78. MR Zbl
N. Andruskiewitsch, I. Heckenberger, and H.-J. Schneider, The Nichols algebra of a semisimple Yetter-Drinfeld module, Amer. J. Math. 132 no. 6 (2010), 1493–1547. MR Zbl
N. Andruskiewitsch and H.-J. Schneider, Lifting of quantum linear spaces and pointed Hopf algebras of order $p^3$, J. Algebra 209 no. 2 (1998), 658–691. DOI MR Zbl
I. Angiono, On Nichols algebras of diagonal type, J. Reine Angew. Math. 683 (2013), 189–251. DOI MR Zbl
I. Angiono, A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems, J. Eur. Math. Soc. (JEMS) 17 no. 10 (2015), 2643–2671. DOI MR Zbl
G. A. García and J. M. J. Giraldi, On Hopf algebras over quantum subgroups, J. Pure Appl. Algebra 223 no. 2 (2019), 738–768. DOI MR Zbl
M. Graña, A freeness theorem for Nichols algebras, J. Algebra 231 no. 1 (2000), 235–257. DOI MR Zbl
M. Graña, On Nichols algebras of low dimension, in New Trends in Hopf Algebra Theory (La Falda, 1999), Contemp. Math. 267, Amer. Math. Soc., Providence, RI, 2000, pp. 111–134. DOI MR Zbl
L. Grunenfelder and M. Mastnak, Pointed Hopf algebras as cocycle deformations, 2010. arXiv:1010.4976 [math.QA].
I. Heckenberger, Classification of arithmetic root systems, Adv. Math. 220 no. 1 (2009), 59–124. DOI MR Zbl
I. Heckenberger and H.-J. Schneider, Yetter-Drinfeld modules over bosonizations of dually paired Hopf algebras, Adv. Math. 244 (2013), 354–394. DOI MR Zbl
N. Hu and R. Xiong, On families of Hopf algebras without the dual Chevalley property, Rev. Un. Mat. Argentina 59 no. 2 (2018), 443–469. DOI MR Zbl
L. Krop and D. E. Radford, Finite-dimensional Hopf algebras of rank one in characteristic zero, J. Algebra 302 no. 1 (2006), 214–230. DOI MR Zbl
S. Majid and R. Oeckl, Twisting of quantum differentials and the Planck scale Hopf algebra, Comm. Math. Phys. 205 no. 3 (1999), 617–655. DOI MR Zbl
O. Márquez, D. Bagio, J. M. J. Giraldi, and G. A. García, Finite-dimensional Nichols algebras over dual Radford algebras, J. Algebra Appl. 20 no. 1 (2021), Paper No. 2140001, 39 pp. DOI MR Zbl
S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Regional Conference Series in Mathematics 82, American Mathematical Society, Providence, RI, 1993. DOI MR Zbl
D. E. Radford, Hopf Algebras, Series on Knots and Everything 49, World Scientific, Hackensack, NJ, 2012. MR Zbl
R. Xiong, On Hopf algebras over the unique 12-dimensional Hopf algebra without the dual Chevalley property, Comm. Algebra 47 no. 4 (2019), 1516–1540. DOI MR Zbl
R. Xiong and N. Hu, Classification of finite-dimensional Hopf algebras over dual Radford algebras, Bull. Belg. Math. Soc. Simon Stevin 28 no. 5 (2022), 633–688. DOI MR Zbl
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Rongchuan Xiong
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. The Journal may retract the paper after publication if clear evidence is found that the findings are unreliable as a result of misconduct or honest error.