Coupling local and nonlocal equations with Neumann boundary conditions
DOI:
https://doi.org/10.33044/revuma.3046Abstract
We introduce two different ways of coupling local and nonlocal equations with Neumann boundary conditions in such a way that the resulting model is naturally associated with an energy functional. For these two models we prove that there is a minimizer of the resulting energy that is unique modulo adding a constant.
Downloads
References
G. Acosta, F. Bersetche, and J. D. Rossi, Local and nonlocal energy-based coupling models, SIAM J. Math. Anal. 54 no. 6 (2022), 6288–6322. DOI MR Zbl
F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi, and J. J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs 165, American Mathematical Society, Providence, RI; Real Sociedad Matemática Española, Madrid, 2010. DOI MR Zbl
Y. Azdoud, F. Han, and G. Lubineau, A morphing framework to couple non-local and local anisotropic continua, Int. J. Solids Struct. 50 no. 9 (2013), 1332–1341. DOI
S. Badia, P. Bochev, R. Lehoucq, M. Parks, J. Fish, M. A. Nuggehally, and M. Gunzburger, A force-based blending model for atomistic-to-continuum coupling, Int. J. Multiscale Comput. Eng. 5 no. 5 (2007), 387–406. DOI
S. Badia, M. Parks, P. Bochev, M. Gunzburger, and R. Lehoucq, On atomistic-to-continuum coupling by blending, Multiscale Model. Simul. 7 no. 1 (2008), 381–406. DOI MR Zbl
P. W. Bates and A. Chmaj, An integrodifferential model for phase transitions: stationary solutions in higher space dimensions, J. Statist. Phys. 95 no. 5-6 (1999), 1119–1139. DOI MR Zbl
H. Berestycki, A.-C. Coulon, J.-M. Roquejoffre, and L. Rossi, The effect of a line with nonlocal diffusion on Fisher-KPP propagation, Math. Models Methods Appl. Sci. 25 no. 13 (2015), 2519–2562. DOI MR Zbl
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011. MR Zbl
M. Capanna and J. D. Rossi, Mixing local and nonlocal evolution equations, Mediterr. J. Math. 20 no. 2 (2023), Paper No. 59, 36 pp. DOI MR Zbl
C. Carrillo and P. Fife, Spatial effects in discrete generation population models, J. Math. Biol. 50 no. 2 (2005), 161–188. DOI MR Zbl
E. Chasseigne, M. Chaves, and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations, J. Math. Pures Appl. (9) 86 no. 3 (2006), 271–291. DOI MR Zbl
C. Cortazar, M. Elgueta, J. D. Rossi, and N. Wolanski, Boundary fluxes for nonlocal diffusion, J. Differential Equations 234 no. 2 (2007), 360–390. DOI MR Zbl
C. Cortazar, M. Elgueta, J. D. Rossi, and N. Wolanski, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems, Arch. Ration. Mech. Anal. 187 no. 1 (2008), 137–156. DOI MR Zbl
M. D'Elia and P. Bochev, Formulation, analysis and computation of an optimization-based local-to-nonlocal coupling method, Results Appl. Math. 9 (2021), Paper No. 100129, 20 pp. DOI MR Zbl
M. D'Elia, X. Li, P. Seleson, X. Tian, and Y. Yu, A review of local-to-nonlocal coupling methods in nonlocal diffusion and nonlocal mechanics, J. Peridyn. Nonlocal Model. 4 no. 1 (2022), 1–50. DOI MR
M. D'Elia, M. Perego, P. Bochev, and D. Littlewood, A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions, Comput. Math. Appl. 71 no. 11 (2016), 2218–2230. DOI MR Zbl
M. D'Elia, D. Ridzal, K. J. Peterson, P. Bochev, and M. Shashkov, Optimization-based mesh correction with volume and convexity constraints, J. Comput. Phys. 313 (2016), 455–477. DOI MR Zbl
M. Di Paola, G. Failla, and M. Zingales, Physically-based approach to the mechanics of strong non-local linear elasticity theory, J. Elasticity 97 no. 2 (2009), 103–130. DOI MR Zbl
Q. Du, X. H. Li, J. Lu, and X. Tian, A quasi-nonlocal coupling method for nonlocal and local diffusion models, SIAM J. Numer. Anal. 56 no. 3 (2018), 1386–1404. DOI MR Zbl
L. C. Evans, Partial Differential Equations, second ed., Graduate Studies in Mathematics 19, American Mathematical Society, Providence, RI, 2010. MR Zbl
P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, in Trends in Nonlinear Analysis, Springer, Berlin, 2003, pp. 153–191. MR Zbl
C. G. Gal and M. Warma, Nonlocal transmission problems with fractional diffusion and boundary conditions on non-smooth interfaces, Comm. Partial Differential Equations 42 no. 4 (2017), 579–625. DOI MR Zbl
A. Gárriz, F. Quirós, and J. D. Rossi, Coupling local and nonlocal evolution equations, Calc. Var. Partial Differential Equations 59 no. 4 (2020), Paper No. 112, 24 pp. DOI MR Zbl
F. Han and G. Lubineau, Coupling of nonlocal and local continuum models by the Arlequin approach, Internat. J. Numer. Methods Engrg. 89 no. 6 (2012), 671–685. DOI MR Zbl
V. Hutson, S. Martinez, K. Mischaikow, and G. T. Vickers, The evolution of dispersal, J. Math. Biol. 47 no. 6 (2003), 483–517. DOI MR Zbl
D. Kriventsov, Regularity for a local-nonlocal transmission problem, Arch. Ration. Mech. Anal. 217 no. 3 (2015), 1103–1195. DOI MR Zbl
T. Mengesha and Q. Du, The bond-based peridynamic system with Dirichlet-type volume constraint, Proc. Roy. Soc. Edinburgh Sect. A 144 no. 1 (2014), 161–186. DOI MR Zbl
L. E. Payne and H. F. Weinberger, An optimal Poincaré inequality for convex domains, Arch. Rational Mech. Anal. 5 (1960), 286–292 (1960). DOI MR Zbl
B. C. dos Santos, S. M. Oliva, and J. D. Rossi, A local/nonlocal diffusion model, Appl. Anal. 101 no. 15 (2022), 5213–5246. DOI MR Zbl
P. Seleson, S. Beneddine, and S. Prudhomme, A force-based coupling scheme for peridynamics and classical elasticity, Comput. Mater. Sci. 66 (2013), 34–49. DOI
P. Seleson and M. Gunzburger, Bridging methods for atomistic-to-continuum coupling and their implementation, Commun. Comput. Phys. 7 no. 4 (2010), 831–876. DOI MR Zbl
P. Seleson, M. Gunzburger, and M. L. Parks, Interface problems in nonlocal diffusion and sharp transitions between local and nonlocal domains, Comput. Methods Appl. Mech. Engrg. 266 (2013), 185–204. DOI MR Zbl
S. A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids 48 no. 1 (2000), 175–209. DOI MR Zbl
S. A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari, Peridynamic states and constitutive modeling, J. Elasticity 88 no. 2 (2007), 151–184. DOI MR Zbl
S. A. Silling and R. B. Lehoucq, Peridynamic theory of solid mechanics, Adv. Appl. Mech. 44 no. 1 (2010), 73–168. DOI
C. Strickland, G. Dangelmayr, and P. D. Shipman, Modeling the presence probability of invasive plant species with nonlocal dispersal, J. Math. Biol. 69 no. 2 (2014), 267–294. DOI MR Zbl
X. Wang, Metastability and stability of patterns in a convolution model for phase transitions, J. Differential Equations 183 no. 2 (2002), 434–461. DOI MR Zbl
L. Zhang, Existence, uniqueness and exponential stability of traveling wave solutions of some integral differential equations arising from neuronal networks, J. Differential Equations 197 no. 1 (2004), 162–196. DOI MR Zbl
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Gabriel Acosta , Francisco Bersetche, Julio D. Rossi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. The Journal may retract the paper after publication if clear evidence is found that the findings are unreliable as a result of misconduct or honest error.