THREE-DIMENSIONAL C_{12}-MANIFOLDS

GHERICI BELDJILALI

Abstract

The present paper is devoted to three-dimensional C_{12}-manifolds (defined by D. Chinea and C. Gonzalez), which are never normal. We study their fundamental properties and give concrete examples. As an application, we study such structures on three-dimensional Lie groups.

1. Introduction

In [6], D. Chinea and C. Gonzalez obtained a classification of the almost contact metric manifolds, studying the space that possess the same symmetries as the covariant derivative of the fundamental 2 -form. This space is decomposed into twelve irreducible components C_{1}, \ldots, C_{12}. In dimension 3 , the classes C_{i} reduce to the following classes: $|C|$ class of cosymplectic manifolds, C_{5} class of β-Kenmotsu manifolds, C_{6} class of α-Sasakian manifolds, C_{9}-manifolds and C_{12}-manifolds.

Most of the research related to almost contact metric structures is concerned with the normal structures which contain the first three classes. Regarding the C_{12} class which is not normal, only two papers address this subject. In the first one [5], the authors developed a systematic study of the curvature of the ChineaGonzalez class $C_{5} \oplus C_{12}$ and obtain some classification theorems for those manifolds that satisfy suitable curvature conditions. This class is defined by using a certain function α and when this function vanishes the class $C_{5} \oplus C_{12}$ reduces to class C_{12}. The second paper [3] contains new results on a particular three-dimensional C_{12}-manifolds with a class of concrete illustrative examples.

The present paper is devoted to three-dimensional C_{12}-manifolds. We present a detailed study of such class in dimension three and we construct a class of examples. As an application, we give all C_{12}-structures on Lie algebras of dimension 3 .

First of all, we will start by introducing the basic concepts that we need in this research.

2. Almost contact manifolds

An odd-dimensional Riemannian manifold $\left(M^{2 n+1}, g\right)$ is said to be an almost contact metric manifold if there exist on M a $(1,1)$-tensor field φ, a vector field ξ

[^0](called the structure vector field) and a 1-form η such that
\[

\left\{$$
\begin{array}{l}
\eta(\xi)=1 \\
\varphi^{2}(X)=-X+\eta(X) \xi \\
g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y)
\end{array}
$$\right.
\]

for any vector fields X, Y on M.
In particular, in an almost contact metric manifold we also have

$$
\varphi \xi=0 \quad \text { and } \quad \eta \circ \varphi=0
$$

The fundamental 2-form ϕ is defined by

$$
\phi(X, Y)=g(X, \varphi Y) .
$$

It is known that the almost contact structure (φ, ξ, η) is said to be normal if and only if

$$
N^{(1)}(X, Y)=N_{\varphi}(X, Y)+2 d \eta(X, Y) \xi=0
$$

for any X, Y on M, where N_{φ} denotes the Nijenhuis torsion of φ, given by

$$
N_{\varphi}(X, Y)=\varphi^{2}[X, Y]+[\varphi X, \varphi Y]-\varphi[\varphi X, Y]-\varphi[X, \varphi Y]
$$

Given an almost contact structure, one can associate in a natural manner an almost CR-structure $\left(\mathcal{D},\left.\varphi\right|_{\mathcal{D}}\right)$, where $\mathcal{D}:=\operatorname{Ker}(\eta)=\operatorname{Im}(\varphi)$ is the distribution of rank $2 n$ transversal to the characteristic vector field ξ. If this almost CR-structure is integrable (i.e., $N_{\varphi}=0$) the manifold $M^{2 n+1}$ is said to be CR-integrable. It is known that normal almost contact manifolds are CR-manifolds.

For more background on almost contact metric manifolds, we recommend the references [1, 4, 9].

3. Three-dimensional C_{12}-Manifolds

In the classification of D. Chinea and C. Gonzalez [6] of almost contact metric manifolds there is a class called C_{12}-manifolds which can be integrable but never normal. In this classification, C_{12}-manifolds are defined by

$$
\left(\nabla_{X} \phi\right)(Y, Z)=\eta(X) \eta(Z)\left(\nabla_{\xi} \eta\right) \varphi Y-\eta(X) \eta(Y)\left(\nabla_{\xi} \eta\right) \varphi Z
$$

In [3] and [5], the $(2 n+1)$-dimensional C_{12}-manifolds are characterized by

$$
\begin{equation*}
\left(\nabla_{X} \varphi\right) Y=\eta(X)(\omega(\varphi Y) \xi+\eta(Y) \varphi \psi) \tag{3.1}
\end{equation*}
$$

for any X and Y vector fields on M, where $\omega=-\left(\nabla_{\xi} \xi\right)^{b}=-\nabla_{\xi} \eta$ and ψ is the vector field given by

$$
\omega(X)=g(X, \psi)=-g\left(X, \nabla_{\xi} \xi\right)
$$

for all X vector field on M.
Moreover, in [3] the $(2 n+1)$-dimensional C_{12}-manifolds are also characterized by

$$
\mathrm{d} \eta=\omega \wedge \eta, \quad \mathrm{d} \phi=0 \quad \text { and } \quad N_{\varphi}=0
$$

Here, we emphasize that the almost C_{12}-manifolds are defined as follows.

Definition 3.1. Let $\left(M^{2 n+1}, \varphi, \xi, \eta, g\right)$ be an almost contact metric manifold. M is called almost C_{12}-manifold if there exists a closed one-form ω which satisfies

$$
\mathrm{d} \eta=\omega \wedge \eta \quad \text { and } \quad \mathrm{d} \phi=0
$$

In addition, if $N_{\varphi}=0$ we say that M is a C_{12}-manifold.
On the other hand, in [7] the author proved that, for an arbitrary 3-dimensional almost contact metric manifold ($M^{3}, \varphi, \xi, \eta, g$), we have

$$
\begin{cases}(1) & \left(\nabla_{X} \varphi\right) Y=g\left(\varphi \nabla_{X} \xi, Y\right) \xi-\eta(Y) \varphi \nabla_{X} \xi \\ (2) & \mathrm{d} \phi=(\operatorname{div} \xi) \eta \wedge \phi \\ (3) & \mathrm{d} \eta=\eta \wedge\left(\nabla_{\xi} \eta\right)+\frac{1}{2}\left(\operatorname{tr}_{g}(\varphi \nabla \xi)\right) \phi\end{cases}
$$

Then, for any 3-dimensional almost C_{12}-manifold ($M^{3}, \varphi, \xi, \eta, g$) we get

$$
\begin{equation*}
\left(\nabla_{X} \varphi\right) Y=g\left(\varphi \nabla_{X} \xi, Y\right) \xi-\eta(Y) \varphi \nabla_{X} \xi \tag{3.2}
\end{equation*}
$$

and

$$
\operatorname{div} \xi=\operatorname{tr}_{g}(\varphi \nabla \xi)=0
$$

Now we shall introduce another possible sufficient and necessary condition of the integrability of almost C_{12}-manifolds.

Proposition 3.2. The almost C_{12}-structure (φ, ξ, η, g) is integrable if and only if, for all X and Y vector fields on M, we have

$$
\begin{equation*}
\left(\nabla_{\varphi X} \varphi\right) Y-\varphi\left(\nabla_{X} \varphi\right) Y=-g\left(\nabla_{X} \xi, Y\right) \xi-\eta(X)(\omega(Y) \xi-\eta(Y) \psi) \tag{3.3}
\end{equation*}
$$

Proof. We know that

$$
N_{\varphi}(X, Y)=\left(\varphi \nabla_{Y} \varphi-\nabla_{\varphi Y} \varphi\right) X-\left(\varphi \nabla_{X} \varphi-\nabla_{\varphi X} \varphi\right) Y
$$

Suppose that $N_{\varphi}=0$ and put

$$
\begin{aligned}
T(X, Y, Z) & =g\left(\varphi\left(\nabla_{X} \varphi\right) Y-\left(\nabla_{\varphi X} \varphi\right) Y, Z\right) \\
& =-g\left(\left(\nabla_{X} \varphi\right) Y, \varphi Z\right)-g\left(\left(\nabla_{\varphi X} \varphi\right) Y, Z\right)
\end{aligned}
$$

One can easily get

$$
\begin{equation*}
T(X, Y, Z)=T(Y, X, Z) \tag{3.4}
\end{equation*}
$$

On the other hand, using formulas

$$
\nabla_{X}(\varphi Y)=\left(\nabla_{X} \varphi\right) Y+\varphi \nabla_{X} Y \quad \text { and } \quad g(\varphi X, Y)=-g(X, \varphi Y)
$$

we can get

$$
g\left(\left(\nabla_{X} \varphi\right) Y, Z\right)=-g\left(Y,\left(\nabla_{X} \varphi\right) Z\right)
$$

and by straightforward computation we have

$$
\begin{equation*}
T(X, Y, Z)=-T(X, Z, Y)+g\left(\nabla_{X} \xi, Y\right) \eta(Z)+g\left(\nabla_{X} \xi, Z\right) \eta(Y) \tag{3.5}
\end{equation*}
$$

Now, using formulas (3.4) and (3.5) we obtain

$$
\begin{aligned}
T(X, Y, Z)= & T(Y, X, Z) \\
= & -T(Y, Z, X)+g\left(\nabla_{Y} \xi, X\right) \eta(Z)+g\left(\nabla_{Y} \xi, Z\right) \eta(X) \\
= & T(Z, X, Y)-g\left(\nabla_{Z} \xi, X\right) \eta(Y)-g\left(\nabla_{Z} \xi, Y\right) \eta(X) \\
& +g\left(\nabla_{Y} \xi, X\right) \eta(Z)+g\left(\nabla_{Y} \xi, Z\right) \eta(X) \\
= & -T(X, Y, Z)+g\left(\nabla_{X} \xi, Y\right) \eta(Z)+g\left(\nabla_{X} \xi, Z\right) \eta(Y) \\
& -g\left(\nabla_{Z} \xi, X\right) \eta(Y)-g\left(\nabla_{Z} \xi, Y\right) \eta(X) \\
& +g\left(\nabla_{Y} \xi, X\right) \eta(Z)+g\left(\nabla_{Y} \xi, Z\right) \eta(X),
\end{aligned}
$$

which implies
$2 T(X, Y, Z)=\left(g\left(\nabla_{X} \xi, Y\right)+g\left(\nabla_{Y} \xi, X\right)\right) \eta(Z)+2 \mathrm{~d} \eta(X, Z) \eta(Y)+2 \mathrm{~d} \eta(Y, Z) \eta(X)$.
Since the structure is almost C_{12}-structure, we have

$$
\begin{aligned}
2 \mathrm{~d} \eta(X, Y) & =g\left(\nabla_{X} \xi, Y\right)-g\left(\nabla_{Y} \xi, X\right) \\
& =\omega(X) \eta(Y)-\eta(X) \omega(Y),
\end{aligned}
$$

therefore

$$
T(X, Y, Z)=g\left(\nabla_{X} \xi, Y\right) \eta(Z)+\eta(X)(\omega(Y) \eta(Z)-\eta(Y) \omega(Z))
$$

which gives our formula 3.3). The proof of the converse is direct.
We summarize all the above in the following main theorem.
Theorem 3.3. Let $\left(M^{3}, \varphi, \xi, \eta, g\right)$ be a 3-dimensional almost contact metric manifold. M is a C_{12}-manifold if and only if

$$
\nabla_{X} \xi=-\eta(X) \psi
$$

where $\psi=-\nabla_{\xi} \xi$.
Proof. Suppose that $\nabla_{X} \xi=-\eta(X) \psi$ for all X vector field on M. From (3.2), we get

$$
\left(\nabla_{X} \varphi\right) Y=\eta(X)(\omega(\varphi Y) \xi+\eta(Y) \varphi \psi)
$$

with $\omega(X)=g(\psi, X)$.
Conversely, assuming that $\left(M^{3}, \varphi, \xi, \eta, g\right)$ is a C_{12}-manifold, this is equivalent to

$$
\left(\nabla_{X} \varphi\right) Y=\eta(X)(\omega(\varphi Y) \xi+\eta(Y) \varphi \psi)
$$

Setting $Y=\xi$ gives

$$
-\varphi \nabla_{X} \xi=\eta(X) \varphi \psi
$$

and hence

$$
\nabla_{X} \xi=\eta(X) \varphi^{2} \psi=-\eta(X) \psi
$$

The following proposition provides another characterization of 3-dimensional C_{12}-manifolds.

Proposition 3.4. Let $\left(M^{3}, \varphi, \xi, \eta, g\right)$ be a 3-dimensional almost contact metric manifold. M is a C_{12}-manifold if and only if

$$
\nabla_{\varphi X} \xi=0
$$

Proof. It is sufficient to prove that $\nabla_{\varphi X} \xi=0$ and $\nabla_{X} \xi=-\eta(X) \psi$ are equivalent with $\psi=-\nabla_{\xi} \xi$. Suppose that $\nabla_{X} \xi=-\eta(X) \psi$, so it is easy to see that $\nabla_{\varphi X} \xi=0$.

Conversely, suppose that $\nabla_{\varphi X} \xi=0$ and replacing X by φX using the formula $\varphi^{2} X=-X+\eta(X) \xi$, we obtain $\nabla_{X} \xi=\eta(X) \nabla_{\xi} \xi$. This completes the proof.

In [3], the authors studied the 3 -dimensional unit C_{12}-manifold, i.e. the case where ψ is a unit vector field. We will deal here with the general case, i.e. ψ is not necessarily unitary. For that, taking $V=\mathrm{e}^{-\rho} \psi$ where $\mathrm{e}^{\rho}=|\psi|$, we get immediately that $\{\xi, V, \varphi V\}$ is an orthonormal frame. We refer to this basis as fundamental basis.

Using this frame, one can get the following:
Proposition 3.5. For any C_{12}-manifold, for all vector fields X on M we have
(1) $\nabla_{X} \xi=-\mathrm{e}^{\rho} \eta(X) V$,
(2) $\nabla_{\xi} V=\mathrm{e}^{\rho} \xi$,
(3) $\nabla_{V} V=\varphi V(\rho) \varphi V$,
(4) $\nabla_{\xi} \varphi V=0$,
(5) $\nabla_{V} \varphi V=-\varphi V(\rho) V$.

Proof. For the first, using (3.1) for $Y=\xi$ we get

$$
\left(\nabla_{X} \varphi\right) \xi=\eta(X) \varphi \psi=\mathrm{e}^{\rho} \eta(X) \varphi V
$$

knowing that $\left(\nabla_{X} \varphi\right) Y=\nabla_{X} \varphi Y-\varphi \nabla_{X} Y$ and applying φ we obtain

$$
\nabla_{X} \xi=\mathrm{e}^{\rho} \eta(X) \varphi^{2} V=-\mathrm{e}^{\rho} \eta(X) V
$$

For the second, we have

$$
2 \mathrm{~d} \omega(\xi, X)=0 \Leftrightarrow g\left(\nabla_{\xi} \psi, X\right)=g\left(\nabla_{X} \psi, \xi\right)=-g\left(\psi, \nabla_{X} \xi\right)=\mathrm{e}^{2 \rho} \eta(X)
$$

which gives

$$
\begin{equation*}
\nabla_{\xi} \psi=\mathrm{e}^{2 \rho} \xi \tag{3.6}
\end{equation*}
$$

and then

$$
\nabla_{\xi} V=\nabla_{\xi}\left(\mathrm{e}^{-\rho} \psi\right)=-\xi(\rho) V+\mathrm{e}^{\rho} \xi
$$

On the other hand, we have

$$
\xi(\rho)=\frac{1}{2} \mathrm{e}^{-2 \rho} \xi\left(\mathrm{e}^{2 \rho}\right)=\frac{1}{2} \mathrm{e}^{-2 \rho} \xi(g(\psi, \psi))=\mathrm{e}^{-2 \rho} g\left(\nabla_{\xi} \psi, \psi\right)=0,
$$

because of (3.6). Then,

$$
\nabla_{\xi} V=\mathrm{e}^{\rho} \xi
$$

For $\nabla_{V} V$, we have

$$
2 \mathrm{~d} \omega(\psi, X)=0 \Leftrightarrow g\left(\nabla_{\psi} \psi, X\right)=g\left(\nabla_{X} \psi, \psi\right)=\frac{1}{2} X g(\psi, \psi)=\mathrm{e}^{2 \rho} g(\operatorname{grad} \rho, X)
$$

i.e. $\nabla_{\psi} \psi=\mathrm{e}^{2 \rho} \operatorname{grad} \rho$, which gives $\nabla_{V} V=\operatorname{grad} \rho-V(\rho) V$.

Also, we have

$$
\operatorname{grad} \rho=\xi(\rho) \xi+V(\rho) V+\varphi V(\rho) \varphi V=V(\rho) V+\varphi V(\rho) \varphi V
$$

then,

$$
\nabla_{V} V=\varphi V(\rho) \varphi V
$$

For the rest, just use the formula $\nabla_{X} \varphi Y=\left(\nabla_{X} \varphi\right) Y+\varphi \nabla_{X} Y$ noting that

$$
\left(\nabla_{V} \varphi\right) X=\left(\nabla_{\varphi V} \varphi\right) X=0
$$

It remains to calculate $\nabla_{\varphi V} V$ and $\nabla_{\varphi V} \varphi V$. For that, we have the following lemma.

Lemma 3.6. For any 3-dimensional C_{12}-manifold, we have
(1) $\nabla_{\varphi V} V=\left(-\mathrm{e}^{\rho}+\operatorname{div} V\right) \varphi V$,
(2) $\nabla_{\varphi V} \varphi V=\left(\mathrm{e}^{\rho}-\operatorname{div} V\right) V$.

Proof. Since $\{\xi, V, \varphi V\}$ is an orthonormal frame,

$$
\nabla_{\varphi V} V=a \xi+b V+c \varphi V
$$

Using Proposition 3.5 we have

$$
a=g\left(\nabla_{\varphi V} V, \xi\right)=-g\left(V, \nabla_{\varphi V} \xi\right)=0
$$

and $b=g\left(\nabla_{\varphi V} V, V\right)=0$. To get the component c, we have

$$
\begin{aligned}
\operatorname{div} V & =g\left(\nabla_{\xi} V, \xi\right)+g\left(\nabla_{\varphi V} \psi, \varphi V\right) \\
& =\mathrm{e}^{\rho}+g\left(\nabla_{\varphi \psi} \psi, \varphi \psi\right) \Leftrightarrow g\left(\nabla_{\varphi V} V, \varphi V\right)=-\mathrm{e}^{\rho}+\operatorname{div} V ;
\end{aligned}
$$

then,

$$
\nabla_{\varphi V} V=\left(-\mathrm{e}^{\rho}+\operatorname{div} V\right) \varphi V
$$

Applying φ with (3.1), we obtain

$$
\nabla_{\varphi V} \varphi V=\left(\mathrm{e}^{\rho}-\operatorname{div} V\right) V
$$

According to Proposition 3.5 and Lemma 3.6 the 3 -dimensional C_{12}-manifold is completely controllable. That is:

Corollary 3.7. For any C_{12}-manifold, we have

$$
\begin{array}{lll}
\nabla_{\xi} \xi=-\mathrm{e}^{\rho} V, & \nabla_{\xi} V=\mathrm{e}^{\rho} \xi, & \nabla_{\xi} \varphi V=0 \\
\nabla_{V} \xi=0, & \nabla_{V} V=\varphi V(\rho) \varphi V, & \nabla_{V} \varphi V=-\varphi V(\rho) V \\
\nabla_{\varphi V} \xi=0, & \nabla_{\varphi V} V=\left(-\mathrm{e}^{\rho}+\operatorname{div} V\right) \varphi V, & \nabla_{\varphi V} \varphi V=\left(\mathrm{e}^{\rho}-\operatorname{div} V\right) V
\end{array}
$$

To clarify these notions, we give the following class of examples.
Example 3.8. We denote the Cartesian coordinates in a 3-dimensional Euclidean space $M=\mathbb{R}^{3}$ by (x, y, z) and define a symmetric tensor field g by

$$
g=\mathrm{e}^{2 f}\left(\begin{array}{ccc}
\alpha^{2}+\beta^{2} & 0 & -\beta \\
0 & \alpha^{2} & 0 \\
-\beta & 0 & 1
\end{array}\right)
$$

where $f=f(y) \neq$ const, $\beta=\beta(x)$ and $\alpha=\alpha(x, y) \neq 0$ everywhere are functions on \mathbb{R}^{3} with $f^{\prime}=\frac{\partial f}{\partial y}$. Further, we define an almost contact metric (φ, ξ, η) on \mathbb{R}^{3} by

$$
\varphi=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & -\beta & 0
\end{array}\right), \quad \xi=\mathrm{e}^{-f}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \quad \eta=\mathrm{e}^{f}(-\beta, 0,1)
$$

The fundamental 1-form η and the 2-form ϕ have the forms

$$
\eta=\mathrm{e}^{f}(d z-\beta d x) \quad \text { and } \quad \phi=-2 \alpha^{2} \mathrm{e}^{2 f} d x \wedge d y
$$

and hence

$$
\begin{gathered}
\mathrm{d} \eta=f^{\prime} \mathrm{e}^{f}(\beta d x \wedge d y+d y \wedge d z)=f^{\prime} d y \wedge \eta \\
\mathrm{~d} \phi=0
\end{gathered}
$$

By a direct computation the nontrivial components of $N_{k j}^{(1) i}$ are given by

$$
N_{12}^{(1) 3}=\beta f^{\prime}, \quad N_{23}^{(1) 3}=f^{\prime} \neq 0 .
$$

But, for all $i, j, k \in\{1,2,3\}$,

$$
\left(N_{\varphi}\right)_{k j}^{i}=0
$$

implying that (φ, ξ, η) becomes integrable non-normal. We have $\omega=f^{\prime} d y$, i.e. $\mathrm{d} \omega=0$ and knowing that ω is the g-dual of ψ, i.e. $\omega(X)=g(X, \psi)$, we have immediately that

$$
\psi=\frac{f^{\prime}}{\alpha^{2}} \mathrm{e}^{-2 f} \frac{\partial}{\partial y}
$$

Thus, (φ, ξ, η, g) is a 3 -parameter family of C_{12} structure on \mathbb{R}^{3}.
Notice that

$$
|\psi|^{2}=\omega(\psi)=g(\psi, \psi)=\frac{f^{\prime 2}}{\alpha^{2}} \mathrm{e}^{-2 f}
$$

implies that $V=\frac{\mathrm{e}^{-f}}{\alpha} \frac{\partial}{\partial y}$ is a unit vector field; then

$$
\left\{\xi=\mathrm{e}^{-f} \frac{\partial}{\partial z}, V=\frac{\mathrm{e}^{-f}}{\alpha} \frac{\partial}{\partial y}, \varphi V=\frac{\mathrm{e}^{-f}}{\alpha}\left(\frac{\partial}{\partial x}+\beta \frac{\partial}{\partial z}\right)\right\}
$$

form an orthonormal basis. To verify the result in formula (3.1), the components of the Levi-Civita connection corresponding to g are given by

$$
\begin{array}{lll}
\nabla_{\xi} \xi=-\frac{f^{\prime} \mathrm{e}^{-f}}{\alpha} V, & \nabla_{\xi} V=\frac{f^{\prime} \mathrm{e}^{-f}}{\alpha} \xi, & \nabla_{\xi} \varphi V=0, \\
\nabla_{V} \xi=0, & \nabla_{V} V=-\frac{\mathrm{e}^{-f}}{\alpha^{2}} \alpha_{1} \varphi V, & \nabla_{V} \varphi V=-\varphi \nabla_{V} V \\
\nabla_{\varphi V} \xi=0, & \nabla_{\varphi V} V=\frac{\mathrm{e}^{-f}}{\alpha^{2}}\left(f^{\prime} \alpha+\alpha_{2}\right) \varphi V, & \nabla_{\varphi V} \varphi V=\varphi \nabla_{\varphi V} V
\end{array}
$$

where $\alpha_{i}=\frac{\partial \alpha}{\partial x_{i}}$. Then, one can easily check that, for all $i, j \in\{1,2,3\}$,

$$
\left(\nabla_{e_{i}} \varphi\right) e_{j}=\nabla_{e_{i}} \varphi e_{j}-\varphi \nabla_{e_{i}} e_{j}=\eta\left(e_{i}\right)\left(\omega\left(\varphi e_{j}\right) \xi+\eta\left(e_{j}\right) \varphi \psi\right)
$$

Now, we denote by R the curvature tensor and by S the Ricci curvature. From [5. Corollary 3.1], one can get the following:

Corollary 3.9. For any 3-dimensional C_{12}-manifold, we have

$$
\begin{align*}
R(X, Y) \xi & =-2 \operatorname{d} \eta(X, Y) \psi-\eta(Y) \nabla_{X} \psi+\eta(X) \nabla_{Y} \psi \tag{3.7}\\
R(X, \xi) Y & =\omega(X)(\omega(Y) \xi-\eta(Y) \psi)+g\left(\nabla_{X} \psi, Y\right) \xi-\eta(Y) \nabla_{X} \psi \\
S(X, \xi) & =-\eta(X) \operatorname{div} \psi
\end{align*}
$$

By use of (3.7), we have

$$
R(\xi, \psi) \xi=-\omega(\psi) \psi-\nabla_{\psi} \psi
$$

Therefore

$$
g(R(\xi, \psi) \psi, \xi)=-\omega(\psi)^{2}-g\left(\nabla_{\psi} \psi, \psi\right)
$$

Thus we have
Proposition 3.10. On 3-dimensional C_{12}-manifolds, the sectional curvature of the plane section spaned by $\{\xi, \psi\}$ is $-\omega(\psi)^{2}-g\left(\nabla_{\psi} \psi, \psi\right)$ and if ψ is unitary the sectional curvature is -1 .

Recall that the conformal curvature tensor vanishes in a 3-dimensional Riemannian manifold, therefore we get (see [2])

$$
\begin{align*}
R(X, Y) Z= & g(Y, Z) Q X-g(X, Z) Q Y+S(Y, Z) X-S(X, Z) Y \\
& -\frac{r}{2}(g(Y, Z) X-g(X, Z) Y) \tag{3.8}
\end{align*}
$$

where r is the scalar curvature. In the following theorem, we obtain an expression for the Ricci operator in a 3 -dimensional C_{12}-manifold.

Theorem 3.11. In a 3-dimensional C_{12}-manifold, the Ricci operator is given by

$$
\begin{equation*}
Q X=(\operatorname{div} \psi) X+\left(\mathrm{e}^{\rho}-2 \operatorname{div} \psi\right) \eta(X) \xi-\omega(X) \psi-\nabla_{X} \psi-\frac{r}{2} \varphi^{2} X \tag{3.9}
\end{equation*}
$$

where Q is the Ricci operator defined by

$$
\begin{equation*}
S(X, Y)=g(Q X, Y) \tag{3.10}
\end{equation*}
$$

Proof. For a 3-dimensional C_{12}-manifold, from (3.7) and 3.8) we have

$$
\begin{equation*}
R(X, \xi) \xi=Q X+(\operatorname{div} \psi) X-2(\operatorname{div} \psi) \eta(X) \xi+\frac{r}{2} \varphi^{2} X \tag{3.11}
\end{equation*}
$$

and from formula 3.7 we get

$$
\begin{equation*}
R(X, \xi) \xi=-\omega(X) \psi-\nabla_{X} \psi+\mathrm{e}^{2 \rho} \eta(X) \xi \tag{3.12}
\end{equation*}
$$

In view of (3.11) and 3.12), we obtain our formula.
Corollary 3.12. In a 3 -dimensional C_{12}-manifold, the Ricci tensor and the curvature tensor are given respectively by

$$
\begin{align*}
S(X, Y)=(& \left.\frac{r}{2}+\operatorname{div} \psi\right) g(X, Y)+\left(\mathrm{e}^{2 \rho}-2 \operatorname{div} \psi-\frac{r}{2}\right) \eta(X) \eta(Y) \tag{3.13}\\
& -\omega(X) \omega(Y)-g\left(\nabla_{X} \psi, Y\right)
\end{align*}
$$

and

$$
\begin{align*}
R(X, Y) Z=(& \left.\mathrm{e}^{2 \rho}-2 \operatorname{div} \psi-\frac{r}{2}\right) \eta(Z)(\eta(Y) X-\eta(X) Y) \\
& -g(Y, Z)\left(\omega(X) \psi+\nabla_{X} \psi-\left(2 \operatorname{div} \psi+\frac{r}{2}\right) X\right) \\
& +g(X, Z)\left(\omega(Y) \psi+\nabla_{Y} \psi-\left(2 \operatorname{div} \psi+\frac{r}{2}\right) Y\right) \tag{3.14}\\
& +\left(\mathrm{e}^{2 \rho}-2 \operatorname{div} \psi-\frac{r}{2}\right)(g(Y, Z) \eta(X)-g(X, Z) \eta(Y)) \xi \\
& -\omega(Z)(\omega(Y) X-\omega(X) Y)+g\left(\nabla_{X} \psi, Z\right) Y-g\left(\nabla_{Y} \psi, Z\right) X .
\end{align*}
$$

Proof. Equation (3.13) follows from (3.9) and (3.10). Using (3.9) and (3.13) in (3.8), the curvature tensor in a 3 -dimensional C_{12}-manifold is given by (3.14).

4. C_{12}-Structures on three-dimensional Lie groups

An almost contact metric structure (φ, ξ, η, g) on a connected Lie group G is said to be left invariant if g is left invariant and if the left multiplication map $L_{a}: G \rightarrow G, L_{a}(x)=a . x$ has the properties

$$
\varphi \circ L_{a}=L_{a} \circ \varphi \quad \text { and } \quad L_{a}(\xi)=\xi \quad \text { for all } a \in G .
$$

Let \mathfrak{g} be an odd-dimensional Lie algebra. An almost contact metric structure on \mathfrak{g} is a quadruple (φ, ξ, η, g), where η is a one-form, φ is an endomorphism of \mathfrak{g} and $\xi \in \mathfrak{g}$ such that

$$
\eta(\xi)=1, \quad \varphi^{2}(X)=-X+\eta(X) \xi, \quad g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y)
$$

for all vector fields X, Y and g is a positive definite compatible inner product on \mathfrak{g}. It is also convenient to use defining relations for the structures on Lie algebras. For instance, an almost contact metric structure (φ, ξ, η, g) on a Lie algebra \mathfrak{g} is said to be a C_{12}-structure if and only if

$$
\begin{equation*}
\nabla_{X} \xi=-\eta(X) \psi=\eta(X) \nabla_{\xi} \xi \tag{4.1}
\end{equation*}
$$

for all X vector field in \mathfrak{g}.
Let G be a connected Lie group of dimension 3, endowed with a left invariant almost contact metric structure (φ, ξ, η, g) and let $\mathfrak{g} \cong T_{e} G$ be the corresponding Lie algebra of G. If $\left\{e_{1}, e_{2}, e_{3}\right\}$ is an orthonormal basis on \mathfrak{g} then

$$
\varphi e_{i}=\sum_{j} \varphi_{i}^{j} e_{j} \quad \text { and } \quad \xi=a e_{1}+b e_{2}+c e_{3}
$$

where φ_{i}^{j} and a, b, c are constants such that $a^{2}+b^{2}+c^{2}=1$.
A classification of the Lie algebras of dimension three is found in [8], where Patera et al. list the nine classes of three-dimensional and twelve classes of fourdimensional Lie algebras. Here is the list of non-abelian three-dimensional algebras along with their defining Lie bracket equations.

Name	Structure equations		
$A_{3,1}$	$\left[e_{2}, e_{3}\right]=e_{1}$		
$A_{3,2}$	$\left[e_{1}, e_{3}\right]=e_{1}$	$\left[e_{2}, e_{3}\right]=e_{1}+e_{2}$	
$A_{3,3}$	$\left[e_{1}, e_{3}\right]=e_{1}$	$\left[e_{2}, e_{3}\right]=e_{2}$	
$A_{3,4}$	$\left[e_{1}, e_{3}\right]=e_{1}$	$\left[e_{2}, e_{3}\right]=-e_{2}$	
$A_{3,5}^{\lambda}$	$\left[e_{1}, e_{3}\right]=e_{1}$	$\left[e_{2}, e_{3}\right]=\lambda e_{2} \quad(0<\|\lambda\|<1)$	
$A_{3,6}$	$\left[e_{1}, e_{3}\right]=-e_{2}$	$\left[e_{2}, e_{3}\right]=e_{1}$	
$A_{3,7}^{\lambda}$	$\left[e_{1}, e_{3}\right]=-\lambda e_{1}-e_{2}$	$\left[e_{2}, e_{3}\right]=e_{1}+\lambda e_{2}$	$(\lambda>0)$
$A_{3,8}$	$\left[e_{1}, e_{2}\right]=e_{1}$	$\left[e_{1}, e_{3}\right]=-2 e_{2}$	$\left[e_{2}, e_{3}\right]=e_{3}$
$A_{3,9}$	$\left[e_{1}, e_{2}\right]=e_{3}$	$\left[e_{1}, e_{3}\right]=-e_{2}$	$\left[e_{2}, e_{3}\right]=e_{1}$

We will investigate the existence of C_{12}-structures on each $A_{3, i}$ and it is sufficient here to find ξ and ψ. From (4.1), we conclude that the existence of the C_{12}-structure is equivalent to

$$
\nabla_{e_{i}} \xi=g\left(\xi, e_{i}\right) \nabla_{\xi} \xi
$$

for any $i \in\{1,2,3\}$ or equivalently,

$$
\left\{\begin{align*}
\nabla_{e_{1}} \xi & =a \nabla_{\xi} \xi \tag{4.2}\\
\nabla_{e_{2}} \xi & =b \nabla_{\xi} \xi \\
\nabla_{e_{3}} \xi & =c \nabla_{\xi} \xi .
\end{align*}\right.
$$

In other words, the existence of C_{12}-structures requires the existence of the constants a, b and c provided that $\nabla_{\xi} \xi \neq 0$.

The algebra $A_{3,1}$. By Koszul's formula, the covariant derivatives of the basis elements are as follows:

$$
\begin{array}{lll}
\nabla_{e_{1}} e_{1}=0 & \nabla_{e_{1}} e_{2}=-\frac{1}{2} e_{3} & \nabla_{e_{1}} e_{3}=\frac{1}{2} e_{2} \\
\nabla_{e_{2}} e_{1}=-\frac{1}{2} e_{3} & \nabla_{e_{2}} e_{2}=0 & \nabla_{e_{2}} e_{3}=\frac{1}{2} e_{1} \\
\nabla_{e_{3}} e_{1}=\frac{1}{2} e_{2} & \nabla_{e_{3}} e_{2}=-\frac{1}{2} e_{1} & \nabla_{e_{3}} e_{3}=0 .
\end{array}
$$

By a simple computation using the covariant derivatives of the basis elements, one can get

$$
\nabla_{e_{1}} \xi=\left(\begin{array}{c}
0 \\
\frac{c}{2} \\
-\frac{b}{2}
\end{array}\right), \nabla_{e_{2}} \xi=\left(\begin{array}{c}
\frac{c}{2} \\
0 \\
-\frac{a}{2}
\end{array}\right), \nabla_{e_{3}} \xi=\left(\begin{array}{c}
-\frac{b}{2} \\
\frac{a}{2} \\
0
\end{array}\right) \text { and } \nabla_{\xi} \xi=\left(\begin{array}{c}
0 \\
a c \\
-a b
\end{array}\right) .
$$

With the help of system 4.2, we obtain

$$
a=b=c=0 .
$$

Then, there exists no C_{12}-structure on $A_{3,1}$.

The algebra $A_{3,2}$. By Koszul's formula, the covariant derivatives of the basis elements are as follows:

$$
\begin{array}{lll}
\nabla_{e_{1}} e_{1}=-e_{3} & \nabla_{e_{1}} e_{2}=-\frac{1}{2} e_{3} & \nabla_{e_{1}} e_{3}=e_{1}+\frac{1}{2} e_{2} \\
\nabla_{e_{2}} e_{1}=-\frac{1}{2} e_{3} & \nabla_{e_{2}} e_{2}=-e_{3} & \nabla_{e_{2}} e_{3}=\frac{1}{2} e_{1}+e_{2} \\
\nabla_{e_{3}} e_{1}=\frac{1}{2} e_{2} & \nabla_{e_{3}} e_{2}=-\frac{1}{2} e_{1} & \nabla_{e_{3}} e_{3}=0 .
\end{array}
$$

One can get

$$
\nabla_{e_{1}} \xi=\left(\begin{array}{c}
c \\
\frac{c}{2} \\
-a-\frac{b}{2}
\end{array}\right), \quad \nabla_{e_{2}} \xi=\left(\begin{array}{c}
\frac{c}{2} \\
c \\
-\frac{a}{2}-b
\end{array}\right), \quad \nabla_{e_{3}} \xi=\left(\begin{array}{c}
-\frac{b}{2} \\
\frac{a}{2} \\
0
\end{array}\right)
$$

and

$$
\nabla_{\xi} \xi=\left(\begin{array}{c}
a c \\
a c+b c \\
-a^{2}-b^{2}-a b
\end{array}\right)
$$

With the help of system 4.2, we get

$$
a=b=c=0 \text {. }
$$

Then, there exists no C_{12}-structure on $A_{3,2}$.
The algebra $A_{3,3}$. By Koszul's formula, the covariant derivatives of the basis elements are as follows:

$$
\begin{array}{lll}
\nabla_{e_{1}} e_{1}=-e_{3} & \nabla_{e_{1}} e_{2}=0 & \nabla_{e_{1}} e_{3}=e_{1} \\
\nabla_{e_{2}} e_{1}=0 & \nabla_{e_{2}} e_{2}=-e_{3} & \nabla_{e_{2}} e_{3}=e_{2} \\
\nabla_{e_{3}} e_{1}=0 & \nabla_{e_{3}} e_{2}=0 & \nabla_{e_{3}} e_{3}=0
\end{array}
$$

One can get

$$
\nabla_{e_{1}} \xi=\left(\begin{array}{c}
c \\
0 \\
-a
\end{array}\right), \nabla_{e_{2}} \xi=\left(\begin{array}{c}
0 \\
c \\
-b
\end{array}\right), \nabla_{e_{3}} \xi=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \text { and } \nabla_{\xi} \xi=\left(\begin{array}{c}
a c \\
b c \\
-a^{2}-b^{2}
\end{array}\right) .
$$

With the help of system 4.2, we get an infinite number of solutions of the form

$$
c=0 \quad \text { with } a^{2}+b^{2}=1
$$

i.e.,

$$
\xi=a e_{1} \pm \sqrt{1-a^{2}} e_{2}, \quad \text { with } a \in[-1,+1] \text { and } \psi=e_{3}
$$

Then, there exists an infinite number of C_{12}-structures on $A_{3,3}$.
The algebra $A_{3,4}$. By Koszul's formula, the covariant derivatives of the basis elements are as follows:

$$
\begin{array}{lll}
\nabla_{e_{1}} e_{1}=-e_{3} & \nabla_{e_{1}} e_{2}=0 & \nabla_{e_{1}} e_{3}=e_{1} \\
\nabla_{e_{2}} e_{1}=0 & \nabla_{e_{2}} e_{2}=e_{3} & \nabla_{e_{2}} e_{3}=-e_{2} \\
\nabla_{e_{3}} e_{1}=0 & \nabla_{e_{3}} e_{2}=0 & \nabla_{e_{3}} e_{3}=0 .
\end{array}
$$

Therefore, we obtain

$$
\nabla_{e_{1}} \xi=\left(\begin{array}{c}
c \\
0 \\
-a
\end{array}\right), \nabla_{e_{2}} \xi=\left(\begin{array}{c}
0 \\
c \\
-b
\end{array}\right), \nabla_{e_{3}} \xi=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \text { and } \nabla_{\xi} \xi=\left(\begin{array}{c}
a c \\
b c \\
-a^{2}-b^{2}
\end{array}\right) .
$$

With the help of system 4.2, we get four solutions of the form

$$
(a, b, c) \in\{(1,0,0) ;(-1,0,0) ;(0,1,0) ;(0,-1,0)\}
$$

i.e.,

$$
(\xi, \psi) \in\left\{\left(e_{1}, e_{3}\right),\left(-e_{1}, e_{3}\right),\left(e_{2}, e_{3}\right),\left(-e_{2}, e_{3}\right)\right\}
$$

So, there exists an infinite number of C_{12}-structures on $A_{3,4}$ with

$$
(\xi, \psi) \in\left\{\left(e_{1}, e_{3}\right),\left(-e_{1}, e_{3}\right),\left(e_{2}, e_{3}\right),\left(-e_{2}, e_{3}\right)\right\} \quad \text { and } \quad \varphi e_{i}=\sum_{j} \varphi_{i}^{j} e_{j}
$$

The algebra $A_{3,5}^{\lambda}$. By Koszul's formula, the covariant derivatives of the basis elements are as follows:

$$
\begin{array}{lll}
\nabla_{e_{1}} e_{1}=-e_{3} & \nabla_{e_{1}} e_{2}=0 & \nabla_{e_{1}} e_{3}=e_{1} \\
\nabla_{e_{2}} e_{1}=0 & \nabla_{e_{2}} e_{2}=-\lambda e_{3} & \nabla_{e_{2}} e_{3}=\lambda e_{2} \\
\nabla_{e_{3}} e_{1}=0 & \nabla_{e_{3}} e_{2}=0 & \nabla_{e_{3}} e_{3}=0 .
\end{array}
$$

Therefore, we obtain

$$
\nabla_{e_{1}} \xi=\left(\begin{array}{c}
c \\
0 \\
-a
\end{array}\right), \nabla_{e_{2}} \xi=\left(\begin{array}{c}
0 \\
\lambda c \\
-\lambda b
\end{array}\right), \nabla_{e_{3}} \xi=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \text { and } \nabla_{\xi} \xi=\left(\begin{array}{c}
a c \\
\lambda b c \\
-a^{2}-\lambda b^{2}
\end{array}\right) .
$$

Replacing in the system 4.2 we get four solutions of the form

$$
(a, b, c) \in\{(1,0,0) ;(-1,0,0) ;(0,1,0) ;(0,-1,0)\}
$$

i.e.,

$$
(\xi, \psi) \in\left\{\left(e_{1}, e_{3}\right),\left(-e_{1}, e_{3}\right),\left(e_{2}, \lambda e_{3}\right),\left(-e_{2}, \lambda e_{3}\right)\right\}
$$

Then, there exists an infinite number of C_{12}-structures on $A_{3,5}^{\lambda}$ with $0<\lambda<1$.
The algebra $A_{3,6}$. By Koszul's formula, the covariant derivatives of the basis elements are as follows:

$$
\begin{array}{lll}
\nabla_{e_{1}} e_{1}=0 & \nabla_{e_{1}} e_{2}=0 & \nabla_{e_{1}} e_{3}=0 \\
\nabla_{e_{2}} e_{1}=0 & \nabla_{e_{2}} e_{2}=0 & \nabla_{e_{2}} e_{3}=0 \\
\nabla_{e_{3}} e_{1}=e_{2} & \nabla_{e_{3}} e_{2}=-e_{1} & \nabla_{e_{3}} e_{3}=0 .
\end{array}
$$

One can get

$$
\nabla_{e_{1}} \xi=\nabla_{e_{2}} \xi=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), \quad \nabla_{e_{3}} \xi=\left(\begin{array}{c}
-b \\
a \\
0
\end{array}\right) \quad \text { and } \quad \nabla_{\xi} \xi=\left(\begin{array}{c}
-b c \\
a c \\
0
\end{array}\right)
$$

From system 4.2 we get $a=b=0$ and $c \in \mathbb{R}$ this implies $\nabla_{\xi} \xi=0$. Then, there exists no C_{12}-structure on $A_{3,6}$.

The algebra $A_{3,7}^{\lambda}$. By Koszul's formula, the covariant derivatives of the basis elements are as follows:

$$
\begin{array}{lll}
\nabla_{e_{1}} e_{1}=\lambda e_{3} & \nabla_{e_{1}} e_{2}=0 & \nabla_{e_{1}} e_{3}=-\lambda e_{1} \\
\nabla_{e_{2}} e_{1}=0 & \nabla_{e_{2}} e_{2}=-\lambda e_{3} & \nabla_{e_{2}} e_{3}=\lambda e_{2} \\
\nabla_{e_{3}} e_{1}=e_{2} & \nabla_{e_{3}} e_{2}=-e_{1} & \nabla_{e_{3}} e_{3}=0
\end{array}
$$

One can get

$$
\nabla_{e_{1}} \xi=\lambda\left(\begin{array}{c}
-c \\
0 \\
a
\end{array}\right), \quad \nabla_{e_{2}} \xi=\lambda\left(\begin{array}{c}
0 \\
c \\
-b
\end{array}\right), \quad \nabla_{e_{3}} \xi=\left(\begin{array}{c}
-b \\
a \\
0
\end{array}\right)
$$

and

$$
\nabla_{\xi} \xi=\left(\begin{array}{c}
-c(a \lambda+b) \\
c(a+b \lambda) \\
\lambda\left(a^{2}-b^{2}\right)
\end{array}\right)
$$

From 4.2, we get

$$
a=b=c=0 .
$$

Then, there exists no C_{12}-structure on $A_{3,7}^{\lambda}$.

The algebra $A_{3,8}$. By Koszul's formula, the covariant derivatives of the basis elements are as follows:

$$
\begin{array}{lll}
\nabla_{e_{1}} e_{1}=-e_{2} & \nabla_{e_{1}} e_{2}=e_{1}+e_{3} & \nabla_{e_{1}} e_{3}=-e_{2} \\
\nabla_{e_{2}} e_{1}=e_{3} & \nabla_{e_{2}} e_{2}=0 & \nabla_{e_{2}} e_{3}=-e_{1} \\
\nabla_{e_{3}} e_{1}=e_{2} & \nabla_{e_{3}} e_{2}=-e_{1}-e_{3} & \nabla_{e_{3}} e_{3}=e_{2}
\end{array}
$$

One can get

$$
\nabla_{e_{1}} \xi=-\nabla_{e_{3}} \xi=\left(\begin{array}{c}
b \\
-a-c \\
b
\end{array}\right), \quad \nabla_{e_{2}} \xi=\left(\begin{array}{c}
-c \\
0 \\
a
\end{array}\right) \quad \text { and } \quad \nabla_{\xi} \xi=\left(\begin{array}{c}
b(a-2 c) \\
-a^{2}+c^{2} \\
b(2 a-c)
\end{array}\right)
$$

From 4.2, we obtain the system

$$
a^{2}=b^{2}=\frac{1}{3} \quad \text { and } \quad c=-a
$$

which gives four solutions;

$$
(a, b, c) \in\left\{\frac{1}{\sqrt{3}}(1,1,-1) ; \frac{1}{\sqrt{3}}(1,-1,-1) ; \frac{1}{\sqrt{3}}(-1,1,1) ; \frac{1}{\sqrt{3}}(-1,-1,1)\right\} .
$$

So, there exists an infinite number of C_{12}-structures on $A_{3,8}$.

The algebra $A_{3,9}$. By Koszul's formula, the covariant derivatives of the basis elements are as follows:

$$
\begin{array}{lll}
\nabla_{e_{1}} e_{1}=0 & \nabla_{e_{1}} e_{2}=\frac{1}{2} e_{3} & \nabla_{e_{1}} e_{3}=-\frac{1}{2} e_{2} \\
\nabla_{e_{2}} e_{1}=-\frac{1}{2} e_{3} & \nabla_{e_{2}} e_{2}=0 & \nabla_{e_{2}} e_{3}=\frac{1}{2} e_{1} \\
\nabla_{e_{3}} e_{1}=\frac{1}{2} e_{2} & \nabla_{e_{3}} e_{2}=\frac{1}{2} e_{1} & \nabla_{e_{3}} e_{3}=0 .
\end{array}
$$

By a simple computation using the covariant derivatives of the basis elements, one can get

$$
\nabla_{e_{1}} \xi=\left(\begin{array}{c}
0 \\
-\frac{c}{2} \\
\frac{b}{2}
\end{array}\right), \nabla_{e_{2}} \xi=\left(\begin{array}{c}
\frac{c}{2} \\
0 \\
-\frac{a}{2}
\end{array}\right), \nabla_{e_{3}} \xi=\left(\begin{array}{c}
-\frac{b}{2} \\
\frac{a}{2} \\
0
\end{array}\right) \text { and } \nabla_{\xi} \xi=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Since $\nabla_{\xi} \xi=0$, there exists no C_{12}-structure on $A_{3,9}$.

References

[1] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics 203, Birkhäuser Boston, Boston, MA, 2002. DOI MR Zbl
[2] D. E. Blair, T. Koufogiorgos, and R. Sharma, A classification of 3-dimensional contact metric manifolds with $Q \varphi=\varphi Q$, Kodai Math. J. 13 no. 3 (1990), 391-401. DOI MR Zbl
[3] H. Bouzir, G. Beldjilali, and B. Bayour, On three dimensional C_{12}-manifolds, Mediterr. J. Math. 18 no. 6 (2021), Paper No. 239, 13 pp. DOI MR Zbl
[4] C. P. Boyer, K. Galicki, and P. Matzeu, On eta-Einstein Sasakian geometry, Comm. Math. Phys. 262 no. 1 (2006), 177-208. DOI MR Zbl
[5] S. de Candia and M. Falcitelli, Curvature of $C_{5} \oplus C_{12}$-manifolds, Mediterr. J. Math. 16 no. 4 (2019), Paper No. 105, 23 pp. DOI MR Zbl
[6] D. Chinea and C. Gonzalez, A classification of almost contact metric manifolds, Ann. Mat. Pura Appl. (4) 156 (1990), 15-36. DOI MR Zbl
[7] Z. Olszak, Normal almost contact metric manifolds of dimension three, Ann. Polon. Math. 47 no. 1 (1986), 41-50. DOI MR Zbl
[8] J. Patera, R. T. Sharp, P. Winternitz, and H. Zassenhaus, Invariants of real low dimension Lie algebras, J. Mathematical Phys. 17 no. 6 (1976), 986-994. DOI MR Zbl
[9] K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics 3, World Scientific, Singapore, 1984. MR Zbl

Gherici Beldjilali

Laboratory of Quantum Physics and Mathematical Modeling (LPQ3M), University of Mascara, Algeria
gherici.beldjilali@univ-mascara.dz

Received: December 22, 2021
Accepted: June 1, 2022

[^0]: 2020 Mathematics Subject Classification. 53D15, 53C25, 22E25 17B30.
 Key words and phrases. Almost contact metric structure, C_{12}-manifolds, Lie algebra.

