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THREE-DIMENSIONAL C12-MANIFOLDS

GHERICI BELDJILALI

Abstract. The present paper is devoted to three-dimensional C12-manifolds
(defined by D. Chinea and C. Gonzalez), which are never normal. We study
their fundamental properties and give concrete examples. As an application,
we study such structures on three-dimensional Lie groups.

1. Introduction

In [6], D. Chinea and C. Gonzalez obtained a classification of the almost contact
metric manifolds, studying the space that possess the same symmetries as the
covariant derivative of the fundamental 2-form. This space is decomposed into
twelve irreducible components C1, . . . , C12. In dimension 3, the classes Ci reduce
to the following classes: |C| class of cosymplectic manifolds, C5 class of β-Kenmotsu
manifolds, C6 class of α-Sasakian manifolds, C9-manifolds and C12-manifolds.

Most of the research related to almost contact metric structures is concerned
with the normal structures which contain the first three classes. Regarding the
C12 class which is not normal, only two papers address this subject. In the first
one [5], the authors developed a systematic study of the curvature of the Chinea–
Gonzalez class C5⊕C12 and obtain some classification theorems for those manifolds
that satisfy suitable curvature conditions. This class is defined by using a certain
function α and when this function vanishes the class C5 ⊕ C12 reduces to class
C12. The second paper [3] contains new results on a particular three-dimensional
C12-manifolds with a class of concrete illustrative examples.

The present paper is devoted to three-dimensional C12-manifolds. We present a
detailed study of such class in dimension three and we construct a class of examples.
As an application, we give all C12-structures on Lie algebras of dimension 3.

First of all, we will start by introducing the basic concepts that we need in this
research.

2. Almost contact manifolds

An odd-dimensional Riemannian manifold (M2n+1, g) is said to be an almost
contact metric manifold if there exist on M a (1, 1)-tensor field ϕ, a vector field ξ
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(called the structure vector field) and a 1-form η such that
η(ξ) = 1,
ϕ2(X) = −X + η(X)ξ,
g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y )

for any vector fields X, Y on M .
In particular, in an almost contact metric manifold we also have

ϕξ = 0 and η ◦ ϕ = 0.

The fundamental 2-form φ is defined by

φ(X,Y ) = g(X,ϕY ).

It is known that the almost contact structure (ϕ, ξ, η) is said to be normal if and
only if

N (1)(X,Y ) = Nϕ(X,Y ) + 2dη(X,Y )ξ = 0
for any X, Y on M , where Nϕ denotes the Nijenhuis torsion of ϕ, given by

Nϕ(X,Y ) = ϕ2[X,Y ] + [ϕX,ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ].

Given an almost contact structure, one can associate in a natural manner an
almost CR-structure (D, ϕ|D), where D := Ker(η) = Im(ϕ) is the distribution of
rank 2n transversal to the characteristic vector field ξ. If this almost CR-structure
is integrable (i.e., Nϕ = 0) the manifold M2n+1 is said to be CR-integrable. It is
known that normal almost contact manifolds are CR-manifolds.

For more background on almost contact metric manifolds, we recommend the
references [1, 4, 9].

3. Three-dimensional C12-manifolds

In the classification of D. Chinea and C. Gonzalez [6] of almost contact metric
manifolds there is a class called C12-manifolds which can be integrable but never
normal. In this classification, C12-manifolds are defined by

(∇Xφ)(Y,Z) = η(X)η(Z)(∇ξη)ϕY − η(X)η(Y )(∇ξη)ϕZ.

In [3] and [5], the (2n+ 1)-dimensional C12-manifolds are characterized by

(∇Xϕ)Y = η(X)
(
ω(ϕY )ξ + η(Y )ϕψ

)
(3.1)

for any X and Y vector fields on M , where ω = −
(
∇ξξ

)[ = −∇ξη and ψ is the
vector field given by

ω(X) = g(X,ψ) = −g(X,∇ξξ)
for all X vector field on M .

Moreover, in [3] the (2n + 1)-dimensional C12-manifolds are also characterized
by

dη = ω ∧ η, dφ = 0 and Nϕ = 0.
Here, we emphasize that the almost C12-manifolds are defined as follows.
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Definition 3.1. Let (M2n+1, ϕ, ξ, η, g) be an almost contact metric manifold. M
is called almost C12-manifold if there exists a closed one-form ω which satisfies

dη = ω ∧ η and dφ = 0.

In addition, if Nϕ = 0 we say that M is a C12-manifold.

On the other hand, in [7] the author proved that, for an arbitrary 3-dimensional
almost contact metric manifold (M3, ϕ, ξ, η, g), we have

(1) (∇Xϕ)Y = g(ϕ∇Xξ, Y )ξ − η(Y )ϕ∇Xξ,
(2) dφ = (div ξ)η ∧ φ,
(3) dη = η ∧ (∇ξη) + 1

2
(

trg(ϕ∇ξ)
)
φ.

Then, for any 3-dimensional almost C12-manifold (M3, ϕ, ξ, η, g) we get

(∇Xϕ)Y = g(ϕ∇Xξ, Y )ξ − η(Y )ϕ∇Xξ (3.2)

and
div ξ = trg(ϕ∇ξ) = 0.

Now we shall introduce another possible sufficient and necessary condition of the
integrability of almost C12-manifolds.

Proposition 3.2. The almost C12-structure (ϕ, ξ, η, g) is integrable if and only if,
for all X and Y vector fields on M , we have(

∇ϕXϕ
)
Y − ϕ

(
∇Xϕ

)
Y = −g(∇Xξ, Y )ξ − η(X)

(
ω(Y )ξ − η(Y )ψ

)
. (3.3)

Proof. We know that

Nϕ(X,Y ) = (ϕ∇Y ϕ−∇ϕY ϕ)X − (ϕ∇Xϕ−∇ϕXϕ)Y.

Suppose that Nϕ = 0 and put

T (X,Y, Z) = g
(
ϕ(∇Xϕ)Y − (∇ϕXϕ)Y, Z

)
= −g

(
(∇Xϕ)Y, ϕZ

)
− g
(
(∇ϕXϕ)Y,Z

)
.

One can easily get
T (X,Y, Z) = T (Y,X,Z). (3.4)

On the other hand, using formulas

∇X(ϕY ) = (∇Xϕ)Y + ϕ∇XY and g(ϕX, Y ) = −g(X,ϕY ),

we can get
g
(
(∇Xϕ)Y, Z

)
= −g

(
Y, (∇Xϕ)Z

)
,

and by straightforward computation we have

T (X,Y, Z) = −T (X,Z, Y ) + g(∇Xξ, Y )η(Z) + g(∇Xξ, Z)η(Y ). (3.5)
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Now, using formulas (3.4) and (3.5) we obtain

T (X,Y, Z) = T (Y,X,Z)
= −T (Y,Z,X) + g(∇Y ξ,X)η(Z) + g(∇Y ξ, Z)η(X)
= T (Z,X, Y )− g(∇Zξ,X)η(Y )− g(∇Zξ, Y )η(X)

+ g(∇Y ξ,X)η(Z) + g(∇Y ξ, Z)η(X)
= −T (X,Y, Z) + g(∇Xξ, Y )η(Z) + g(∇Xξ, Z)η(Y )
− g(∇Zξ,X)η(Y )− g(∇Zξ, Y )η(X)
+ g(∇Y ξ,X)η(Z) + g(∇Y ξ, Z)η(X),

which implies

2T (X,Y, Z) =
(
g(∇Xξ, Y ) + g(∇Y ξ,X)

)
η(Z) + 2dη(X,Z)η(Y ) + 2dη(Y,Z)η(X).

Since the structure is almost C12-structure, we have
2dη(X,Y ) = g(∇Xξ, Y )− g(∇Y ξ,X)

= ω(X)η(Y )− η(X)ω(Y ),

therefore

T (X,Y, Z) = g(∇Xξ, Y )η(Z) + η(X)
(
ω(Y )η(Z)− η(Y )ω(Z)

)
,

which gives our formula (3.3). The proof of the converse is direct. �

We summarize all the above in the following main theorem.

Theorem 3.3. Let (M3, ϕ, ξ, η, g) be a 3-dimensional almost contact metric man-
ifold. M is a C12-manifold if and only if

∇Xξ = −η(X)ψ,

where ψ = −∇ξξ.

Proof. Suppose that ∇Xξ = −η(X)ψ for all X vector field on M . From (3.2), we
get

(∇Xϕ)Y = η(X)
(
ω(ϕY )ξ + η(Y )ϕψ

)
,

with ω(X) = g(ψ,X).
Conversely, assuming that (M3, ϕ, ξ, η, g) is a C12-manifold, this is equivalent to

(∇Xϕ)Y = η(X)
(
ω(ϕY )ξ + η(Y )ϕψ

)
.

Setting Y = ξ gives
−ϕ∇Xξ = η(X)ϕψ,

and hence

∇Xξ = η(X)ϕ2ψ = −η(X)ψ. �

The following proposition provides another characterization of 3-dimensional
C12-manifolds.
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Proposition 3.4. Let (M3, ϕ, ξ, η, g) be a 3-dimensional almost contact metric
manifold. M is a C12-manifold if and only if

∇ϕXξ = 0.

Proof. It is sufficient to prove that ∇ϕXξ = 0 and ∇Xξ = −η(X)ψ are equivalent
with ψ = −∇ξξ. Suppose that ∇Xξ = −η(X)ψ, so it is easy to see that ∇ϕXξ = 0.

Conversely, suppose that ∇ϕXξ = 0 and replacing X by ϕX using the formula
ϕ2X = −X + η(X)ξ, we obtain ∇Xξ = η(X)∇ξξ. This completes the proof. �

In [3], the authors studied the 3-dimensional unit C12-manifold, i.e. the case
where ψ is a unit vector field. We will deal here with the general case, i.e. ψ is not
necessarily unitary. For that, taking V = e−ρψ where eρ = |ψ|, we get immediately
that {ξ, V, ϕV } is an orthonormal frame. We refer to this basis as fundamental
basis.

Using this frame, one can get the following:

Proposition 3.5. For any C12-manifold, for all vector fields X on M we have
(1) ∇Xξ = −eρη(X)V ,
(2) ∇ξV = eρξ,
(3) ∇V V = ϕV (ρ)ϕV ,
(4) ∇ξϕV = 0,
(5) ∇V ϕV = −ϕV (ρ)V .

Proof. For the first, using (3.1) for Y = ξ we get
(∇Xϕ)ξ = η(X)ϕψ = eρη(X)ϕV ;

knowing that (∇Xϕ)Y = ∇XϕY − ϕ∇XY and applying ϕ we obtain

∇Xξ = eρη(X)ϕ2V = −eρη(X)V.
For the second, we have

2dω(ξ,X) = 0 ⇔ g(∇ξψ,X) = g(∇Xψ, ξ) = −g(ψ,∇Xξ) = e2ρη(X),
which gives

∇ξψ = e2ρξ (3.6)
and then

∇ξV = ∇ξ(e−ρψ) = −ξ(ρ)V + eρξ.
On the other hand, we have

ξ(ρ) = 1
2e−2ρξ(e2ρ) = 1

2e−2ρξ
(
g(ψ,ψ)

)
= e−2ρg(∇ξψ,ψ) = 0,

because of (3.6). Then,
∇ξV = eρξ.

For ∇V V , we have
2dω(ψ,X) = 0 ⇔ g(∇ψψ,X) = g(∇Xψ,ψ) = 1

2Xg(ψ,ψ) = e2ρg(grad ρ,X),

i.e. ∇ψψ = e2ρ grad ρ, which gives ∇V V = grad ρ− V (ρ)V .
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Also, we have

grad ρ = ξ(ρ)ξ + V (ρ)V + ϕV (ρ)ϕV = V (ρ)V + ϕV (ρ)ϕV ;

then,
∇V V = ϕV (ρ)ϕV.

For the rest, just use the formula ∇XϕY = (∇Xϕ)Y + ϕ∇XY noting that

(∇V ϕ)X = (∇ϕV ϕ)X = 0. �

It remains to calculate ∇ϕV V and ∇ϕV ϕV . For that, we have the following
lemma.

Lemma 3.6. For any 3-dimensional C12-manifold, we have
(1) ∇ϕV V = (−eρ + divV )ϕV ,
(2) ∇ϕV ϕV = (eρ − divV )V .

Proof. Since {ξ, V, ϕV } is an orthonormal frame,

∇ϕV V = a ξ + b V + c ϕV.

Using Proposition 3.5, we have

a = g(∇ϕV V, ξ) = −g(V,∇ϕV ξ) = 0

and b = g(∇ϕV V, V ) = 0. To get the component c, we have

divV = g(∇ξV, ξ) + g(∇ϕV ψ,ϕV )
= eρ + g(∇ϕψψ,ϕψ) ⇔ g(∇ϕV V, ϕV ) = −eρ + divV ;

then,
∇ϕV V = (−eρ + divV )ϕV.

Applying ϕ with (3.1), we obtain

∇ϕV ϕV = (eρ − divV )V. �

According to Proposition 3.5 and Lemma 3.6, the 3-dimensional C12-manifold
is completely controllable. That is:

Corollary 3.7. For any C12-manifold, we have
∇ξξ = −eρV, ∇ξV = eρξ, ∇ξϕV = 0,
∇V ξ = 0, ∇V V = ϕV (ρ)ϕV, ∇V ϕV = −ϕV (ρ)V,
∇ϕV ξ = 0, ∇ϕV V = (−eρ + divV )ϕV, ∇ϕV ϕV = (eρ − divV )V.

To clarify these notions, we give the following class of examples.

Example 3.8. We denote the Cartesian coordinates in a 3-dimensional Euclidean
space M = R3 by (x, y, z) and define a symmetric tensor field g by

g = e2f

α2 + β2 0 −β
0 α2 0
−β 0 1

 ,
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where f = f(y) 6= const, β = β(x) and α = α(x, y) 6= 0 everywhere are functions
on R3 with f ′ = ∂f

∂y . Further, we define an almost contact metric (ϕ, ξ, η) on R3

by

ϕ =

0 −1 0
1 0 0
0 −β 0

 , ξ = e−f
0

0
1

 , η = ef (−β, 0, 1).

The fundamental 1-form η and the 2-form φ have the forms
η = ef (dz − βdx) and φ = −2α2e2fdx ∧ dy,

and hence
dη = f ′ef

(
βdx ∧ dy + dy ∧ dz

)
= f ′dy ∧ η,

dφ = 0.
By a direct computation the nontrivial components of N (1) i

kj are given by

N
(1) 3
12 = βf ′, N

(1) 3
23 = f ′ 6= 0.

But, for all i, j, k ∈ {1, 2, 3},
(Nϕ)ikj = 0,

implying that (ϕ, ξ, η) becomes integrable non-normal. We have ω = f ′dy, i.e.
dω = 0 and knowing that ω is the g-dual of ψ, i.e. ω(X) = g(X,ψ), we have
immediately that

ψ = f ′

α2 e−2f ∂

∂y
.

Thus, (ϕ, ξ, η, g) is a 3-parameter family of C12 structure on R3.
Notice that

|ψ|2 = ω(ψ) = g(ψ,ψ) = f ′2

α2 e−2f

implies that V = e−f

α
∂
∂y is a unit vector field; then{

ξ = e−f ∂
∂z
, V = e−f

α

∂

∂y
, ϕV = e−f

α

(
∂

∂x
+ β

∂

∂z

)}
form an orthonormal basis. To verify the result in formula (3.1), the components
of the Levi-Civita connection corresponding to g are given by

∇ξξ = −f
′e−f

α
V, ∇ξV = f ′e−f

α
ξ, ∇ξϕV = 0,

∇V ξ = 0, ∇V V = −e−f

α2 α1ϕV, ∇V ϕV = −ϕ∇V V,

∇ϕV ξ = 0, ∇ϕV V = e−f

α2 (f ′α+ α2)ϕV, ∇ϕV ϕV = ϕ∇ϕV V,

where αi = ∂α
∂xi

. Then, one can easily check that, for all i, j ∈ {1, 2, 3},

(∇eiϕ)ej = ∇eiϕej − ϕ∇eiej = η(ei)
(
ω(ϕej)ξ + η(ej)ϕψ

)
.

Now, we denote by R the curvature tensor and by S the Ricci curvature. From
[5, Corollary 3.1], one can get the following:
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Corollary 3.9. For any 3-dimensional C12-manifold, we have

R(X,Y )ξ = −2dη(X,Y )ψ − η(Y )∇Xψ + η(X)∇Y ψ, (3.7)
R(X, ξ)Y = ω(X)

(
ω(Y )ξ − η(Y )ψ

)
+ g(∇Xψ, Y )ξ − η(Y )∇Xψ,

S(X, ξ) = −η(X) divψ.

By use of (3.7), we have

R(ξ, ψ)ξ = −ω(ψ)ψ −∇ψψ.

Therefore
g(R(ξ, ψ)ψ, ξ) = −ω(ψ)2 − g(∇ψψ,ψ).

Thus we have

Proposition 3.10. On 3-dimensional C12-manifolds, the sectional curvature of
the plane section spaned by {ξ, ψ} is −ω(ψ)2 − g(∇ψψ,ψ) and if ψ is unitary the
sectional curvature is −1.

Recall that the conformal curvature tensor vanishes in a 3-dimensional Riemann-
ian manifold, therefore we get (see [2])

R(X,Y )Z = g(Y,Z)QX − g(X,Z)QY + S(Y,Z)X − S(X,Z)Y

− r

2
(
g(Y, Z)X − g(X,Z)Y

)
,

(3.8)

where r is the scalar curvature. In the following theorem, we obtain an expression
for the Ricci operator in a 3-dimensional C12-manifold.

Theorem 3.11. In a 3-dimensional C12-manifold, the Ricci operator is given by

QX = (divψ)X + (eρ − 2 divψ)η(X)ξ − ω(X)ψ −∇Xψ −
r

2ϕ
2X, (3.9)

where Q is the Ricci operator defined by

S(X,Y ) = g(QX,Y ). (3.10)

Proof. For a 3-dimensional C12-manifold, from (3.7) and (3.8) we have

R(X, ξ)ξ = QX + (divψ)X − 2 (divψ)η(X)ξ + r

2ϕ
2X, (3.11)

and from formula (3.7) we get

R(X, ξ)ξ = −ω(X)ψ −∇Xψ + e2ρη(X)ξ. (3.12)

In view of (3.11) and (3.12), we obtain our formula. �

Corollary 3.12. In a 3-dimensional C12-manifold, the Ricci tensor and the cur-
vature tensor are given respectively by

S(X,Y ) =
(r

2 + divψ
)
g(X,Y ) +

(
e2ρ − 2 divψ − r

2
)
η(X)η(Y )

− ω(X)ω(Y )− g(∇Xψ, Y ),
(3.13)
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and

R(X,Y )Z =
(

e2ρ − 2 divψ − r

2

)
η(Z)

(
η(Y )X − η(X)Y

)
− g(Y,Z)

(
ω(X)ψ +∇Xψ −

(
2 divψ + r

2

)
X
)

+ g(X,Z)
(
ω(Y )ψ +∇Y ψ −

(
2 divψ + r

2

)
Y
)

+
(

e2ρ − 2 divψ − r

2

)(
g(Y, Z)η(X)− g(X,Z)η(Y )

)
ξ

− ω(Z)
(
ω(Y )X − ω(X)Y

)
+ g(∇Xψ,Z)Y − g(∇Y ψ,Z)X.

(3.14)

Proof. Equation (3.13) follows from (3.9) and (3.10). Using (3.9) and (3.13) in
(3.8), the curvature tensor in a 3-dimensional C12-manifold is given by (3.14). �

4. C12-structures on three-dimensional Lie groups

An almost contact metric structure (ϕ, ξ, η, g) on a connected Lie group G is
said to be left invariant if g is left invariant and if the left multiplication map
La : G→ G, La(x) = a.x has the properties

ϕ ◦ La = La ◦ ϕ and La(ξ) = ξ for all a ∈ G.

Let g be an odd-dimensional Lie algebra. An almost contact metric structure on
g is a quadruple (ϕ, ξ, η, g), where η is a one-form, ϕ is an endomorphism of g and
ξ ∈ g such that

η(ξ) = 1, ϕ2(X) = −X + η(X)ξ, g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y )

for all vector fields X, Y and g is a positive definite compatible inner product on g.
It is also convenient to use defining relations for the structures on Lie algebras. For
instance, an almost contact metric structure (ϕ, ξ, η, g) on a Lie algebra g is said
to be a C12-structure if and only if

∇Xξ = −η(X)ψ = η(X)∇ξξ (4.1)

for all X vector field in g.
Let G be a connected Lie group of dimension 3, endowed with a left invariant

almost contact metric structure (ϕ, ξ, η, g) and let g ∼= TeG be the corresponding
Lie algebra of G. If {e1, e2, e3} is an orthonormal basis on g then

ϕei =
∑
j

ϕjiej and ξ = ae1 + be2 + ce3,

where ϕji and a, b, c are constants such that a2 + b2 + c2 = 1.
A classification of the Lie algebras of dimension three is found in [8], where

Patera et al. list the nine classes of three-dimensional and twelve classes of four-
dimensional Lie algebras. Here is the list of non-abelian three-dimensional algebras
along with their defining Lie bracket equations.
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Name Structure equations

A3,1 [e2, e3] = e1

A3,2 [e1, e3] = e1 [e2, e3] = e1 + e2

A3,3 [e1, e3] = e1 [e2, e3] = e2

A3,4 [e1, e3] = e1 [e2, e3] = −e2

Aλ3,5 [e1, e3] = e1 [e2, e3] = λe2 (0 < |λ| < 1)
A3,6 [e1, e3] = −e2 [e2, e3] = e1

Aλ3,7 [e1, e3] = −λe1 − e2 [e2, e3] = e1 + λe2 (λ > 0)
A3,8 [e1, e2] = e1 [e1, e3] = −2e2 [e2, e3] = e3

A3,9 [e1, e2] = e3 [e1, e3] = −e2 [e2, e3] = e1

We will investigate the existence of C12-structures on each A3,i and it is sufficient
here to find ξ and ψ. From (4.1), we conclude that the existence of the C12-structure
is equivalent to

∇eiξ = g(ξ, ei)∇ξξ
for any i ∈ {1, 2, 3} or equivalently,

∇e1ξ = a∇ξξ
∇e2ξ = b∇ξξ
∇e3ξ = c∇ξξ.

(4.2)

In other words, the existence of C12-structures requires the existence of the con-
stants a, b and c provided that ∇ξξ 6= 0.

The algebra A3,1. By Koszul’s formula, the covariant derivatives of the basis
elements are as follows:

∇e1e1 = 0 ∇e1e2 = − 1
2e3 ∇e1e3 = 1

2e2

∇e2e1 = − 1
2e3 ∇e2e2 = 0 ∇e2e3 = 1

2e1

∇e3e1 = 1
2e2 ∇e3e2 = − 1

2e1 ∇e3e3 = 0.

By a simple computation using the covariant derivatives of the basis elements, one
can get

∇e1ξ =

 0
c
2
− b

2

 , ∇e2ξ =

 c
2
0
−a2

 , ∇e3ξ =

− b
2
a
2
0

 and ∇ξξ =

 0
ac
−ab

 .

With the help of system (4.2), we obtain

a = b = c = 0.

Then, there exists no C12-structure on A3,1.
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The algebra A3,2. By Koszul’s formula, the covariant derivatives of the basis
elements are as follows:

∇e1e1 = −e3 ∇e1e2 = − 1
2e3 ∇e1e3 = e1 + 1

2e2

∇e2e1 = − 1
2e3 ∇e2e2 = −e3 ∇e2e3 = 1

2e1 + e2

∇e3e1 = 1
2e2 ∇e3e2 = − 1

2e1 ∇e3e3 = 0.

One can get

∇e1ξ =

 c
c
2

−a− b
2

 , ∇e2ξ =

 c
2
c

−a2 − b

 , ∇e3ξ =

− b
2
a
2
0


and

∇ξξ =

 ac
ac+ bc

−a2 − b2 − ab

 .

With the help of system 4.2, we get

a = b = c = 0.

Then, there exists no C12-structure on A3,2.

The algebra A3,3. By Koszul’s formula, the covariant derivatives of the basis
elements are as follows:

∇e1e1 = −e3 ∇e1e2 = 0 ∇e1e3 = e1

∇e2e1 = 0 ∇e2e2 = −e3 ∇e2e3 = e2

∇e3e1 = 0 ∇e3e2 = 0 ∇e3e3 = 0.

One can get

∇e1ξ =

 c
0
−a

 , ∇e2ξ =

 0
c
−b

 , ∇e3ξ =

0
0
0

 and ∇ξξ =

 ac
bc

−a2 − b2

 .

With the help of system 4.2, we get an infinite number of solutions of the form

c = 0 with a2 + b2 = 1,

i.e.,
ξ = ae1 ±

√
1− a2e2, with a ∈ [−1,+1] and ψ = e3.

Then, there exists an infinite number of C12-structures on A3,3.

The algebra A3,4. By Koszul’s formula, the covariant derivatives of the basis
elements are as follows:

∇e1e1 = −e3 ∇e1e2 = 0 ∇e1e3 = e1

∇e2e1 = 0 ∇e2e2 = e3 ∇e2e3 = −e2

∇e3e1 = 0 ∇e3e2 = 0 ∇e3e3 = 0.
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Therefore, we obtain

∇e1ξ =

 c
0
−a

 , ∇e2ξ =

 0
c
−b

 , ∇e3ξ =

0
0
0

 and ∇ξξ =

 ac
bc

−a2 − b2

 .

With the help of system 4.2, we get four solutions of the form

(a, b, c) ∈ {(1, 0, 0); (−1, 0, 0); (0, 1, 0); (0,−1, 0)},

i.e.,
(ξ, ψ) ∈ {(e1, e3), (−e1, e3), (e2, e3), (−e2, e3)}.

So, there exists an infinite number of C12-structures on A3,4 with

(ξ, ψ) ∈ {(e1, e3), (−e1, e3), (e2, e3), (−e2, e3)} and ϕei =
∑
j

ϕjiej .

The algebra Aλ3,5. By Koszul’s formula, the covariant derivatives of the basis
elements are as follows:

∇e1e1 = −e3 ∇e1e2 = 0 ∇e1e3 = e1

∇e2e1 = 0 ∇e2e2 = −λe3 ∇e2e3 = λe2

∇e3e1 = 0 ∇e3e2 = 0 ∇e3e3 = 0.

Therefore, we obtain

∇e1ξ =

 c
0
−a

 , ∇e2ξ =

 0
λc
−λb

 , ∇e3ξ =

0
0
0

 and ∇ξξ =

 ac
λbc

−a2 − λb2

 .

Replacing in the system 4.2, we get four solutions of the form

(a, b, c) ∈ {(1, 0, 0); (−1, 0, 0); (0, 1, 0); (0,−1, 0)},

i.e.,
(ξ, ψ) ∈ {(e1, e3), (−e1, e3), (e2, λe3), (−e2, λe3)}.

Then, there exists an infinite number of C12-structures on Aλ3,5with 0 < λ < 1.

The algebra A3,6. By Koszul’s formula, the covariant derivatives of the basis
elements are as follows:

∇e1e1 = 0 ∇e1e2 = 0 ∇e1e3 = 0
∇e2e1 = 0 ∇e2e2 = 0 ∇e2e3 = 0
∇e3e1 = e2 ∇e3e2 = −e1 ∇e3e3 = 0.

One can get

∇e1ξ = ∇e2ξ =

0
0
0

 , ∇e3ξ =

−ba
0

 and ∇ξξ =

−bcac
0

 .

From system 4.2, we get a = b = 0 and c ∈ R this implies ∇ξξ = 0. Then, there
exists no C12-structure on A3,6.
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The algebra Aλ3,7. By Koszul’s formula, the covariant derivatives of the basis
elements are as follows:

∇e1e1 = λe3 ∇e1e2 = 0 ∇e1e3 = −λe1

∇e2e1 = 0 ∇e2e2 = −λe3 ∇e2e3 = λe2

∇e3e1 = e2 ∇e3e2 = −e1 ∇e3e3 = 0.

One can get

∇e1ξ = λ

−c0
a

 , ∇e2ξ = λ

 0
c
−b

 , ∇e3ξ =

−ba
0


and

∇ξξ =

−c(aλ+ b)
c(a+ bλ)
λ(a2 − b2)

 .

From 4.2, we get

a = b = c = 0.

Then, there exists no C12-structure on Aλ3,7.

The algebra A3,8. By Koszul’s formula, the covariant derivatives of the basis
elements are as follows:

∇e1e1 = −e2 ∇e1e2 = e1 + e3 ∇e1e3 = −e2

∇e2e1 = e3 ∇e2e2 = 0 ∇e2e3 = −e1

∇e3e1 = e2 ∇e3e2 = −e1 − e3 ∇e3e3 = e2.

One can get

∇e1ξ = −∇e3ξ =

 b
−a− c
b

 , ∇e2ξ =

−c0
a

 and ∇ξξ =

b(a− 2c)
−a2 + c2

b(2a− c)

 .

From 4.2, we obtain the system

a2 = b2 = 1
3 and c = −a,

which gives four solutions;

(a, b, c) ∈
{

1√
3 (1, 1,−1); 1√

3 (1,−1,−1); 1√
3 (−1, 1, 1); 1√

3 (−1,−1, 1)
}
.

So, there exists an infinite number of C12-structures on A3,8.
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The algebra A3,9. By Koszul’s formula, the covariant derivatives of the basis
elements are as follows:

∇e1e1 = 0 ∇e1e2 = 1
2e3 ∇e1e3 = − 1

2e2

∇e2e1 = − 1
2e3 ∇e2e2 = 0 ∇e2e3 = 1

2e1

∇e3e1 = 1
2e2 ∇e3e2 = 1

2e1 ∇e3e3 = 0.
By a simple computation using the covariant derivatives of the basis elements, one
can get

∇e1ξ =

 0
− c

2
b
2

 , ∇e2ξ =

 c
2
0
−a2

 , ∇e3ξ =

− b
2
a
2
0

 and ∇ξξ =

0
0
0

 .

Since ∇ξξ = 0, there exists no C12-structure on A3,9.
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