The John–Nirenberg inequality for Orlicz–Lorentz spaces in a probabilistic setting
DOI:
https://doi.org/10.33044/revuma.3106Abstract
The John–Nirenberg inequality is widely studied in the field of mathematical analysis and probability theory. In this paper we study a new type of the John–Nirenberg inequality for Orlicz–Lorentz spaces in a probabilistic setting. To be precise, let $0 < q \leq \infty$ and $\Phi$ be an $N$-function with some proper restrictions. We prove that if the stochastic basis $\{\mathcal{F}_n\}_{n \geq 0}$ is regular, then $BMO_{\Phi,q}=BMO$, with equivalent (quasi)-norms. The result is new, which improves previous work on martingale Hardy theory.
Downloads
References
C. Bennett and R. Sharpley, Interpolation of Operators, Pure and Applied Mathematics 129, Academic Press, Boston, MA, 1988. MR Zbl
W. Chen, K.-P. Ho, Y. Jiao, and D. Zhou, Weighted mixed-norm inequality on Doob's maximal operator and John-Nirenberg inequalities in Banach function spaces, Acta Math. Hungar. 157 no. 2 (2019), 408–433. DOI MR Zbl
A. M. Garsia, Martingale Inequalities: Seminar Notes on Recent Progress, Mathematics Lecture Note Series, W. A. Benjamin, Reading, Mass., 1973. MR Zbl
L. Grafakos, Classical Fourier Analysis, second ed., Graduate Texts in Mathematics 249, Springer, New York, 2008. DOI MR Zbl
Z. Hao and L. Li, Grand martingale Hardy spaces, Acta Math. Hungar. 153 no. 2 (2017), 417–429. DOI MR Zbl
Z. Hao and L. Li, Orlicz-Lorentz Hardy martingale spaces, J. Math. Anal. Appl. 482 no. 1 (2020), 123520, 27 pp. DOI MR Zbl
G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, second ed., Cambridge, at the University Press, 1952. MR Zbl
C. Herz, Bounded mean oscillation and regulated martingales, Trans. Amer. Math. Soc. 193 (1974), 199–215. DOI MR Zbl
K.-P. Ho, Atomic decompositions, dual spaces and interpolations of martingale Hardy-Lorentz-Karamata spaces, Q. J. Math. 65 no. 3 (2014), 985–1009. DOI MR Zbl
G. Hong and T. Mei, John-Nirenberg inequality and atomic decomposition for noncommutative martingales, J. Funct. Anal. 263 no. 4 (2012), 1064–1097. DOI MR Zbl
Y. Jiao, L. Wu, and L. Peng, Weak Orlicz-Hardy martingale spaces, Internat. J. Math. 26 no. 8 (2015), 1550062, 26 pp. DOI MR Zbl
Y. Jiao, L. Wu, A. Yang, and R. Yi, The predual and John-Nirenberg inequalities on generalized BMO martingale spaces, Trans. Amer. Math. Soc. 369 no. 1 (2017), 537–553. DOI MR Zbl
Y. Jiao, D. Zhou, Z. Hao, and W. Chen, Martingale Hardy spaces with variable exponents, Banach J. Math. Anal. 10 no. 4 (2016), 750–770. DOI MR Zbl
F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. DOI MR Zbl
M. Junge and M. Musat, A noncommutative version of the John-Nirenberg theorem, Trans. Amer. Math. Soc. 359 no. 1 (2007), 115–142. DOI MR Zbl
A. Kamińska, Some remarks on Orlicz-Lorentz spaces, Math. Nachr. 147 (1990), 29–38. DOI MR Zbl
L. Li, A remark on John-Nirenberg theorem for martingales, Ukrainian Math. J. 70 no. 11 (2019), 1812–1820. DOI MR Zbl
L. Long, H. Tian, and D. Zhou, Interpolation of martingale Orlicz-Hardy spaces, Acta Math. Hungar. 163 no. 1 (2021), 276–294. DOI MR Zbl
R. L. Long, Martingale Spaces and Inequalities, Peking University Press, Beijing; Friedr. Vieweg & Sohn, Braunschweig, 1993. DOI MR Zbl
S. J. Montgomery-Smith, Orlicz-Lorentz spaces, in Proceedings of the Orlicz Memorial Conference, Oxford, Mississippi, 1991.
S. J. Montgomery-Smith, Comparison of Orlicz-Lorentz spaces, Studia Math. 103 no. 2 (1992), 161–189. DOI MR Zbl
J. Neveu, Discrete-Parameter Martingales, revised ed., North-Holland Mathematical Library 10, North-Holland, Amsterdam-Oxford; American Elsevier, New York, 1975. MR Zbl
M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics 146, Marcel Dekker, New York, 1991. MR Zbl
I. B. Simonenko, Interpolation and extrapolation of linear operators in Orlicz spaces, Mat. Sb. (N.S.) 63(105) (1964), 536–553. MR Zbl Available at https://eudml.org/doc/69615.
F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier Analysis, Lecture Notes in Mathematics 1568, Springer-Verlag, Berlin, 1994. DOI MR Zbl
R. Yi, L. Wu, and Y. Jiao, New John-Nirenberg inequalities for martingales, Statist. Probab. Lett. 86 (2014), 68–73. DOI MR Zbl
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Libo Li, Zhiwei Hao
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. The Journal may retract the paper after publication if clear evidence is found that the findings are unreliable as a result of misconduct or honest error.