The minimal number of homogeneous geodesics depending on the signature of the Killing form

Authors

  • Zdeněk Dušek Institute of Technology and Business in České Budějovice, Okružní 517/10, 370 01 České Budějovice, Czech Republic

DOI:

https://doi.org/10.33044/revuma.3132

Abstract

The existence of at least two homogeneous geodesics in any homogeneous Finsler manifold was proved in a previous paper by the author. The examples of solvable Lie groups with invariant Finsler metric which admit just two homogeneous geodesics were presented in another paper. In the present work, it is shown that a homogeneous Finsler manifold with indefinite Killing form admits at least four homogeneous geodesics. Examples of invariant Randers metrics on Lie groups with definite Killing form admitting just two homogeneous geodesics and examples with indefinite Killing form admitting just four homogeneous geodesics are presented.

Downloads

Download data is not yet available.

References

D. Bao, S.-S. Chern, and Z. Shen, An Introduction to Riemann-Finsler Geometry, Graduate Texts in Mathematics 200, Springer-Verlag, New York, 2000.  DOI  MR  Zbl

S. Deng, Homogeneous Finsler Spaces, Springer Monographs in Mathematics, Springer, New York, 2012.  DOI  MR  Zbl

Z. Dušek, The existence of homogeneous geodesics in homogeneous pseudo-Riemannian and affine manifolds, J. Geom. Phys. 60 no. 5 (2010), 687–689.  DOI  MR  Zbl

Z. Dušek, The affine approach to homogeneous geodesics in homogeneous Finsler spaces, Arch. Math. (Brno) 54 no. 5 (2018), 257–263.  DOI  MR  Zbl

Z. Dušek, The existence of homogeneous geodesics in special homogeneous Finsler spaces, Mat. Vesnik 71 no. 1-2 (2019), 16–22.  MR  Zbl Available at http://www.vesnik.math.rs/landing.php?p=mv1912.cap&name=mv191202.

Z. Dušek, The existence of two homogeneous geodesics in Finsler geometry, Symmetry 11(7) (2019), Paper No. 850, 5 pp.  DOI

Z. Dušek, Homogeneous Randers spaces admitting just two homogeneous geodesics, Arch. Math. (Brno) 55 no. 5 (2019), 281–288.  DOI  MR  Zbl

Z. Dušek, Geodesic graphs in Randers g.o. spaces, Comment. Math. Univ. Carolin. 61 no. 2 (2020), 195–211.  DOI  MR  Zbl

O. Kowalski, S. Nikčević, and Z. Vlášek, Homogeneous geodesics in homogeneous Riemannian manifolds—examples, in Geometry and Topology of Submanifolds, X (Beijing/Berlin, 1999), World Scientific, River Edge, NJ, 2000, pp. 104–112.  DOI  MR  Zbl

O. Kowalski and J. Szenthe, On the existence of homogeneous geodesics in homogeneous Riemannian manifolds, Geom. Dedicata 81 no. 1-3 (2000), 209–214, Erratum: Geom. Dedicata 84 no. 1-3 (2001), 331–332.  DOI  MR  Zbl

O. Kowalski and Z. Vlášek, Homogeneous Riemannian manifolds with only one homogeneous geodesic, Publ. Math. Debrecen 62 no. 3-4 (2003), 437–446.  DOI  MR  Zbl

D. Latifi, Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys. 57 no. 5 (2007), 1421–1433.  DOI  MR  Zbl

B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Pure and Applied Mathematics 103, Academic Press, New York, 1983.  MR  Zbl

Z. Shen, Lectures on Finsler Geometry, World Scientific, Singapore, 2001.  DOI  MR  Zbl

Z. Yan and S. Deng, Existence of homogeneous geodesics on homogeneous Randers spaces, Houston J. Math. 44 no. 2 (2018), 481–493.  MR  Zbl

Z. Yan and L. Huang, On the existence of homogeneous geodesic in homogeneous Finsler spaces, J. Geom. Phys. 124 (2018), 264–267.  DOI  MR  Zbl

Downloads

Published

2023-11-29

Issue

Section

Article