Gorenstein properties of split-by-nilpotent extension algebras
DOI:
https://doi.org/10.33044/revuma.3303Abstract
Let $A$ be a finite-dimensional $k$-algebra over an algebraically closed field $k$. In this note, we study the Gorenstein homological properties of a split-by-nilpotent extension algebra. Let $R$ be a split-by-nilpotent extension of $A$. We provide sufficient conditions to ensure when a Gorenstein-projective module over $A$ induces a similar structure over $R$. We also study when a Gorenstein-projective $R$-module induces a Gorenstein-projective $A$-module. Moreover, we study the relationship between the Gorensteinness of $A$ and $R$.
Downloads
References
I. Assem and N. Marmaridis, Tilting modules over split-by-nilpotent extensions, Comm. Algebra 26 no. 5 (1998), 1547–1555. DOI MR Zbl
I. Assem, D. Simson, and A. Skowroński, Elements of the representation theory of associative algebras. Vol. 1, London Mathematical Society Student Texts 65, Cambridge University Press, Cambridge, 2006. DOI MR Zbl
M. Auslander and M. Bridger, Stable module theory, Mem. Amer. Math. Soc. no. 94 (1969). DOI MR Zbl
L. L. Avramov and A. Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, Proc. London Math. Soc. (3) 85 no. 2 (2002), 393–440. DOI MR Zbl
A. Beligiannis and I. Reiten, Homological and homotopical aspects of torsion theories, Mem. Amer. Math. Soc. 188 no. 883 (2007). DOI MR Zbl
X.-W. Chen, Singularity categories, Schur functors and triangular matrix rings, Algebr. Represent. Theory 12 no. 2-5 (2009), 181–191. DOI MR Zbl
X.-W. Chen, D. Shen, and G. Zhou, The Gorenstein-projective modules over a monomial algebra, Proc. Roy. Soc. Edinburgh Sect. A 148 no. 6 (2018), 1115–1134. DOI MR Zbl
E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 no. 4 (1995), 611–633. DOI MR Zbl
E. E. Enochs and O. M. G. Jenda, Relative homological algebra, De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin, 2000. DOI MR Zbl
C. Geiss and I. Reiten, Gentle algebras are Gorenstein, in Representations of algebras and related topics, Fields Inst. Commun. 45, Amer. Math. Soc., Providence, RI, 2005, pp. 129–133. MR Zbl
D. Happel, On Gorenstein algebras, in Representation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991), Progr. Math. 95, Birkhäuser, Basel, 1991, pp. 389–404. DOI MR Zbl
B. Keller and I. Reiten, Cluster-tilted algebras are Gorenstein and stably Calabi-Yau, Adv. Math. 211 no. 1 (2007), 123–151. DOI MR Zbl
M. Lu, Gorenstein properties of simple gluing algebras, Algebr. Represent. Theory 22 no. 3 (2019), 517–543. DOI MR Zbl
R. Marczinzik, On stable modules that are not Gorenstein projective, 2017. arXiv:1709.01132v3 [math.RT].
C. M. Ringel, The Gorenstein projective modules for the Nakayama algebras. I, J. Algebra 385 (2013), 241–261. DOI MR Zbl
C. M. Ringel and P. Zhang, Gorenstein-projective and semi-Gorenstein-projective modules, Algebra Number Theory 14 no. 1 (2020), 1–36. DOI MR Zbl
P. Suarez, Split-by-nilpotent extensions and support $tau$-tilting modules, Algebr. Represent. Theory 23 no. 6 (2020), 2295–2313. DOI MR Zbl
B.-L. Xiong and P. Zhang, Gorenstein-projective modules over triangular matrix Artin algebras, J. Algebra Appl. 11 no. 4 (2012), 1250066, 14 pp. DOI MR Zbl
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Pamela Suarez
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. The Journal may retract the paper after publication if clear evidence is found that the findings are unreliable as a result of misconduct or honest error.