On the Maximum Weighted Irredundant Set Problem

Authors

  • Ricardo D. Katz CIFASIS-CONICET, Argentina
  • Daniel Severín Departamento de Matemática, FCEIA, Universidad Nacional de Rosario, Argentina and CONICET, Argentina https://orcid.org/0000-0003-2391-3489

DOI:

https://doi.org/10.33044/revuma.3349

Abstract

We present a generalization of a well-known domination parameter, the upper irredundance number, and address its associated optimization problem, namely the Maximum Weighted Irredundant Set (MWIS) problem, which models some service allocation problems. We establish a polynomial time reduction to the Maximum Weighted Stable Set (MWSS) problem that we use to find graph classes for which the MWIS problem is polynomial, among other results. We formalize these results in the proof assistant Coq. This is mainly convenient in the case of some of them due to the structure of their proofs. We also present a heuristic and an integer programming formulation for the MWIS problem and check that the heuristic delivers good quality solutions through experimentation.

Downloads

Download data is not yet available.

Author Biography

Ricardo D. Katz, CIFASIS-CONICET, Argentina

Investigador Adjunto de CONICET

References

C. Bazgan, L. Brankovic, K. Casel, and H. Fernau, Domination chain: Characterisation, classical complexity, parameterised complexity and approximability, Discrete Appl. Math. 280 (2020), 23–42.  DOI  MR  Zbl

A. Boyacı and J. Monnot, Weighted upper domination number, in LAGOS'17—IX Latin and American Algorithms, Graphs and Optimization, Electron. Notes Discrete Math. 62, Elsevier, Amsterdam, 2017, pp. 171–176.  DOI  MR  Zbl

E. J. Cockayne, S. T. Hedetniemi, and D. J. Miller, Properties of hereditary hypergraphs and middle graphs, Canad. Math. Bull. 21 no. 4 (1978), 461–468.  DOI  MR  Zbl

B. Courcelle, J. A. Makowsky, and U. Rotics, Linear time solvable optimization problems on graphs of bounded clique-width, Theory Comput. Syst. 33 no. 2 (2000), 125–150.  DOI  MR  Zbl

M. Cygan, F. V. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh, Parameterized algorithms, Springer, Cham, 2015.  MR  Zbl

C. Doczkal and D. Pous, Graph theory in Coq: minors, treewidth, and isomorphisms, J. Automat. Reason. 64 no. 5 (2020), 795–825.  DOI  MR  Zbl

R. G. Downey, M. R. Fellows, and V. Raman, The complexity of irredundant sets parameterized by size, Discrete Appl. Math. 100 no. 3 (2000), 155–167.  DOI  MR  Zbl

O. Favaron, T. W. Haynes, S. T. Hedetniemi, M. A. Henning, and D. J. Knisley, Total irredundance in graphs, Discrete Math. 256 no. 1-2 (2002), 115–127.  DOI  MR  Zbl

G. Gonthier, Formal proof—the four-color theorem, Notices Amer. Math. Soc. 55 no. 11 (2008), 1382–1393.  MR  Zbl

G. Gonthier and A. Mahboubi, An introduction to small scale reflection in Coq, J. Formaliz. Reason. 3 no. 2 (2010), 95–152.  DOI  MR  Zbl

J. Harrison, Formal proof—theory and practice, Notices Amer. Math. Soc. 55 no. 11 (2008), 1395–1406.  MR  Zbl

T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of domination in graphs, Monogr. Textbooks Pure Appl. Math. 208, Marcel Dekker, New York, 1998.  MR  Zbl

T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (eds.), Domination in graphs: Advanced topics, Monogr. Textbooks Pure Appl. Math. 209, Marcel Dekker, New York, 1998.  MR  Zbl

IBM ILOG CPLEX Optimizer. Available at https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer.

R. D. Katz and D. Severín, Coq/Ssreflect for large case-based graph theory proofs, 2021, The 12th Coq Workshop, online, affiliated with ITP 2021. Abstract available at https://coq-workshop.gitlab.io/2021/abstracts/Coq2021-04-02-graph-theory-proofs.pdf

V. V. Lozin and R. Mosca, Independent sets in extensions of $2K_2$-free graphs, Discrete Appl. Math. 146 no. 1 (2005), 74–80.  DOI  MR  Zbl

A. A. McRae, Generalizing NP-completeness proofs for bipartite graphs and chordal graphs, Ph.D. thesis, Clemson University, 1994. Available at https://open.clemson.edu/arv_dissertations/1682.

G. J. Minty, On maximal independent sets of vertices in claw-free graphs, J. Combin. Theory Ser. B 28 no. 3 (1980), 284–304.  DOI  MR  Zbl

G. L. Nemhauser and G. Sigismondi, A strong cutting plane/branch-and-bound algorithm for node packing, J. Oper. Res. Soc. 43 (1992), 443–457.  DOI  Zbl

P. R. J. Östergård, A new algorithm for the maximum-weight clique problem, Nordic J. Comput. 8 no. 4 (2001), 424–436.  MR  Zbl

P. Pinacho Davidson, C. Blum, and J. A. Lozano, The weighted independent domination problem: Integer linear programming models and metaheuristic approaches, European J. Oper. Res. 265 no. 3 (2018), 860–871.  DOI  MR  Zbl

D. E. Severín, Formalization of the domination chain with weighted parameters, in 10th International Conference on Interactive Theorem Proving, LIPIcs. Leibniz Int. Proc. Inform. 141, Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern, 2019, article no. 36.  DOI  MR  Zbl

Downloads

Published

2025-05-20

Issue

Section

Article