The Reconstruction problem for multivalued linear operator’s properties

Authors

  • Nihel Feki Department of Mathematics, Faculty of Sciences of Sfax, University of Sfax, Tunisia
  • Maher Mnif Department of Mathematics, Faculty of Sciences of Sfax, University of Sfax, Tunisia

DOI:

https://doi.org/10.33044/revuma.3425

Abstract

The reconstruction problem for a multivalued linear operator (linear relation) $T$ is viewed as the exploration of some properties of $T$ from those of a restriction of $T$ on an invariant linear subspace M.

Downloads

Download data is not yet available.

References

T. Álvarez, On regular linear relations, Acta Math. Sin. (Engl. Ser.) 28 no. 1 (2012), 183–194.  DOI  MR  Zbl

C.-G. Ambrozie and F.-H. Vasilescu, Banach space complexes, Mathematics and its Applications 334, Kluwer Academic Publishers, Dordrecht, 1995.  DOI  MR  Zbl

R. Arens, Operational calculus of linear relations, Pacific J. Math. 11 (1961), 9–23.  MR  Zbl Available at http://projecteuclid.org/euclid.pjm/1103037531.

B. A. Barnes, Restrictions of bounded linear operators: closed range, Proc. Amer. Math. Soc. 135 no. 6 (2007), 1735–1740.  DOI  MR  Zbl

A. G. Baskakov and A. S. Zagorskiĭ, On the spectral theory of linear relations on real Banach spaces (in Russian), Mat. Zametki 81 no. 1 (2007), 17–31, English translation in Math. Notes 81 no. 1 (2007), 15–27.  DOI  MR  Zbl

E. Chafai and M. Mnif, Ascent and essential ascent spectrum of linear relations, Extracta Math. 31 no. 2 (2016), 145–167.  MR  Zbl

R. Cross, Multivalued linear operators, Monographs and Textbooks in Pure and Applied Mathematics 213, Marcel Dekker, New York, 1998.  MR  Zbl

J. Dixmier, Étude sur les variétés et les opérateurs de Julia, avec quelques applications, Bull. Soc. Math. France 77 (1949), 11–101.  DOI  MR  Zbl

S. V. Djordjević and B. P. Duggal, Spectral properties of linear operator through invariant subspaces, Funct. Anal. Approx. Comput. 1 no. 1 (2009), 19–29.  MR  Zbl

S. V. Djordjević and B. P. Duggal, Drazin invertibility of the diagonal of an operator, Linear Multilinear Algebra 60 no. 1 (2012), 65–71.  DOI  MR  Zbl

C. Foiaş, Invariant para-closed subspaces, Indiana Univ. Math. J. 20 no. 10 (1971), 897–900.  DOI  MR  Zbl

A. Ghorbel and M. Mnif, Drazin inverse of multivalued operators and its applications, Monatsh. Math. 189 no. 2 (2019), 273–293.  DOI  MR  Zbl

I. Issaoui and M. Mnif, Characterization of Saphar linear relations, Complex Anal. Oper. Theory 13 no. 8 (2019), 3753–3766.  DOI  MR  Zbl

M. Lajnef and M. Mnif, On generalized Drazin invertible linear relations, Rocky Mountain J. Math. 50 no. 4 (2020), 1387–1408.  DOI  MR  Zbl

P. Saveliev, Lomonosov's invariant subspace theorem for multivalued linear operators, Proc. Amer. Math. Soc. 131 no. 3 (2003), 825–834.  DOI  MR  Zbl

A. E. Taylor and D. C. Lay, Introduction to functional analysis, second ed., John Wiley & Sons, New York, 1980.  MR  Zbl

Downloads

Published

2025-04-11

Issue

Section

Article