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THE SPACE OF INFINITE PARTITIONS OF N
AS A TOPOLOGICAL RAMSEY SPACE

JULIÁN C. CANO AND CARLOS A. DI PRISCO

Abstract. The Ramsey theory of the space of equivalence relations with
infinite quotients defined on the set N of natural numbers is an interesting field
of research. We view this space as a topological Ramsey space (E∞,≤, r) and
present a game theoretic characterization of the Ramsey property of subsets
of E∞. We define a notion of coideal and consider the Ramsey property of
subsets of E∞ localized on a coideal H ⊆ E∞. Conditions a coideal H should
satisfy to make the structure (E∞,H,≤, r) a Ramsey space are presented.
Forcing notions related to a coideal H and their main properties are analyzed.

1. Introduction

In this article we consider the Ramsey property of collections of equivalence
relations with infinite quotients on the set of natural numbers, continuing the study
of the dual Ramsey theory initiated by Carlson and Simpson in [1] and continued
by Halbeisen, Matet and Todorcevic in [12, 17, 14, 23].

Dual Ramsey theory deals with combinatorial properties of sets of partitions
analogous to the Ramsey property of sets of infinite subsets of N as studied in
[9, 6, 20].

Let E∞ be the set of all infinite equivalence relations on the set of natural
numbers. We identify elements of E∞ with partitions of the set N into infinitely
many parts.

For a positive integer k, the collection of all equivalence relations on ω with
exactly k equivalence classes is denoted by Ek.

Both E∞ and Ek are subsets of 2ω×ω, and therefore topological spaces with the
inherited topology.

We will view E∞ as a topological Ramsey space, and we will use the notation
and the following definitions as presented in [23, Chapter 5].

If E is a partition of N into infinitely many equivalence classes, each class [x]E
has a minimal representative. Let p(E) be the set of minimal representatives and
{pn(E) : n ∈ N} its increasing enumeration. Note that p0(E) = 0 for every E ∈ E∞.
In this fashion, the equivalence classes of E are enumerated by {[pn(E)] : n ∈ N}.
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The space E∞ is endowed with an order relation ≤ defined as follows (see [1, 23]):
If E,F ∈ E∞, we write E ≤ F if E is coarser than F , that is, if every class of E
is a union of classes of F . In this case, p(E) ⊆ p(F ). Notice that the converse
implication is not true in general.

Given a family E of partitions of N and A ∈ E∞, the restriction of E to A is
defined by

E �A = {B ∈ E : B ≤ A}.
For E ∈ E∞, the nth approximation to E is

rn(E) = E � pn(E),
the restriction of the equivalence relation E to the set

pn(E) = {0, 1, . . . , pn(E)− 1}.
For every E ∈ E∞, r0(E) = ∅.

The set of all approximations is denoted by AE∞, and consists of all equivalence
relations on sets of the form {0, 1, . . . , k} for k ∈ N.

For every a ∈ AE∞, the length of a, denoted by |a|, is the unique n ∈ N such
that a = rn(E) for some E ∈ E∞; and the domain of a, denoted by dom(a), is the
integer p|a|(E) = {0, 1, . . . , p|a|(E) − 1}, where E ∈ E∞ is such that a = r|a|(E).
The function r : N × E∞ → AE∞ is defined by r(n,E) = rn(E). For n ∈ N, let
AEn = {a ∈ AE∞ : |a| = n}; thus AE∞ =

⋃
n∈NAEn.

Given an approximation a ∈ AE∞ with dom(a) = {0, 1, . . . , k} and |a| = n ≤ k,
let p(a) = {p0(a), . . . , pn−1(a)} be the set of minimal representatives of the equiv-
alence classes of a listed in increasing order. Then, the equivalence classes of a are
enumerated by {[p0(a)], . . . , [pn−1(a)]}.

For a, b ∈ AE∞, we write a v b if there are m,n ∈ N with m ≤ n such that
a = rm(E) and b = rn(E) for some E ∈ E∞.

The order relation ≤ in E∞ allows a finitization ≤fin on AE∞ (see [23]): for
a, b ∈ AE∞, a ≤fin b if dom(a) = dom(b) and a is coarser than b.

For A ∈ E∞, let
AE∞ �A = {a ∈ AE∞ : ∃n(a ≤fin rn(A))},
AEk �A = {a ∈ AEk : ∃n(a ≤fin rn(A))}.

There is a natural topology on E∞, namely, the metrizable topology induced by
the product topology of 2ω×ω (with the discrete topology on 2).

If a ∈ AE∞, we use [a] to denote the set {E ∈ E∞ : r|a|(E) = a}. It should be
noted that {[a] : a ∈ AE∞} is a basis for the metrizable topology on E∞.

We will also consider a finer topology on E∞, the Ellentuck topology, namely
the topology generated by the basic sets of the form

[a,E] = {X ∈ E∞ : a = r|a|(X) and X ≤ E},

where a ∈ AE∞ and E ∈ E∞. Thus [∅, E] is just E∞ �E = {X ∈ E∞ : X ≤ E}.
Notice that a basic set [a,E] is nonempty if and only if there is some n such

that a ≤fin rn(E).
We will use the symbol [n,E] to abbreviate [rn(E), E].
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Given a basic set [a,E], let

AE∞ � [a,E] = {b ∈ AE∞ : a v b and (∃n ≥ |a|)(∃A ∈ [a,E])(b = rn(A))}.

For A ∈ E∞, a partition A∗ ∈ E∞ is called a finite modification of A if A∗ is
obtained by amalgamating a finite number of classes of A. More formally, given a
finite set u of natural numbers, let

Au = {∪{x ∈ A : x ∩ u 6= ∅}} ∪ {x ∈ A : x ∩ u = ∅}.

So, A∗ is a finite modification of A if there is a finite collection {u1, . . . , uk} of
pairwise disjoint finite subsets of N, such that A∗ = (. . . ((Au1)u2) . . . )uk

, that is,

A∗ = {x ∈ A : x ∩
⋃k

i=1 ui = ∅} ∪
⋃k

i=1 {∪{x ∈ A : x ∩ ui 6= ∅}} .

Matet in [17] defines the quasi-order relation ≤∗ on E∞ (see also [3, 21]): write
A ≤∗ B, and say that A is almost below B (or almost coarser than B), if there
exists a finite modification A∗ of A such that A∗ ≤ B. We notice the following:

Fact 1.1. Let A,B ∈ E∞ be partitions; then A ≤∗ B if and only if there exists
a ∈ AE∞ �A such that [a,A] ⊆ [a,B].

Proof. Suppose A ≤∗ B and let A∗ ≤ A be a finite modification of A such that A∗ ≤
B. If [pn1(A)], . . . , [pnk

(A)] are classes of the partition A that are amalgamated
to obtain A∗, let a ∈ AE1 � A be given by a = {0, . . . , pnk+1(A) − 1}; then,
[a,A] = [a,A∗] and thus [a,A] ⊆ [a,B].

Conversely, suppose that [a,A] ⊆ [a,B] for some a ∈ AE∞ � A, and let n ∈
N be such that a ≤fin rn(A). Let A∗ ∈ [a,A] be such that A∗ is obtained by
amalgamating a finite number of classes of A in the same way as a is obtained by
amalgamating classes of rn(A). Then, A∗ ≤ A is a finite modification of A such
that A∗ ∈ [a,B], thus A∗ ≤ B, and therefore A ≤∗ B. �

The collection of all partitions of N can be viewed as a lattice (see [17, 14]). Call
E≤∞ the set of all partitions of N; then E≤∞ = E∞ ∪

⋃∞
k=1 Ek. The order relation

≤ defined on E∞ extends naturally to E≤∞, and induces the lattice operations t
and u on E≤∞ defined as follows: given E and F in E≤∞, E t F is the coarsest
partition that refines both E and F , and E uF is the finest partition that is below
both E and F . The set E≤∞ together with the operations t and u is a bounded
lattice with maximum {{n} : n ∈ N} and minimum {N}. This lattice is complete,
complemented and non-distributive.

We will study combinatorial properties of subsets of E∞, and their relations with
topological properties.

One of the first results of the combinatorics of partitions is the dual Ramsey
theorem of Carlson and Simpson:

Theorem 1.2 ([1]). For every k,m positive integers, if Ek = C1 ∪ · · · ∪ Cm is a
finite partition of E∞ where every Ci is Borel, then there exists X ∈ E∞ such that
Ek �X ⊆ Ci for some i.
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A subset X ⊆ E∞ determines a partition of E∞ into two parts, so one can ask
when there is X ∈ E∞ such that E∞ �X is contained in one of these parts. This
motivates the definition of the Ramsey property of subsets of E∞.

Definition 1.3 (Carlson–Simpson). A set X ⊆ E∞ is Ramsey if for every neigh-
borhood [a,A] 6= ∅ there exists B ∈ [a,A] such that [a,B] ⊆ X or [a,B] ∩ X = ∅.

A set X ⊆ E∞ is Ramsey null if for every neighborhood [a,A] 6= ∅ there exists
B ∈ [a,A] such that [a,B] ∩ X = ∅.

A set X ⊆ E∞ has the abstract Baire property if for every neighborhood [a,A] 6= ∅
there exists ∅ 6= [b, B] ⊆ [a,A] such that [b, B] ⊆ X or [b, B] ∩ X = ∅.

A set X ⊆ E∞ is nowhere dense if for every neighborhood [a,A] 6= ∅ there exists
∅ 6= [b, B] ⊆ [a,A] such that [b, B] ∩ X = ∅.

It follows from the definitions that if a set X ⊆ E∞ is Ramsey then it has the
abstract Baire property, and that if it is Ramsey null then it is nowhere dense.

Recall that a subset X of a topological space has the Baire property if there is
an open set O and a meager set M such that X = O

a
M.

It is easy to verify that if a set X ⊆ E∞ has the abstract Baire property then it
has the Baire property with respect to the Ellentuck topology. For the space E∞
with the Ellentuck topology the converse is also true. This is stated in the next
fact.

Fact 1.4. A set X ⊆ E∞ is meager with respect to the Ellentuck topology if and
only if it is nowhere dense with respect to this topology.

A set X ⊆ E∞ has the abstract Baire property if and only if it has the Baire
property with respect to the Ellentuck topology.

Proof. Let M ⊆ E∞ be an Ellentuck-meager set. Then M =
⋃∞

i=0Ni, where
every Ni is nowhere dense. We can assume that for every i, Ni ⊆ Ni+1. Given a
basic set [a,A] 6= ∅, let [a0, A0] ⊆ [a,A] such that [a0, A0] ∩ N0 = ∅. Suppose we
have defined [a,A] ⊇ [a0, A0] ⊇ [a1, A1] ⊇ · · · ⊇ [an, An] satisfying that for every
i < n and every b ≤fin ai with a = r|a|(b), [b, Ai] ∩ Ni = ∅. Now, since Nn+1 is
nowhere dense, we can find [an+1, An+1] ⊆ [an, An] such that for every b ≤fin an

with a = r|a|(b), [b, An+1] ∩ Nn+1 = ∅. Notice that this can be done since the
collection of b satisfying b ≤fin an is finite.

We have thus defined inductively a sequence
[a,A] ⊇ [a0, A0] ⊇ [a1, A1] ⊇ · · · ⊇ [an, An] ⊇ . . . .

The limit of this sequence is the unique A∞ ∈ [a,A] such that r|an|(A∞) =
r|an|(An) = an for every n.

We claim that [a,A∞] ∩ M = ∅. This follows from the fact that [a,A∞] ⊆
[an, An] for every n. Thus, M is an Ellentuck-nowhere dense set.

The second part of the statement follows from the first one. �

The following theorem gives a topological characterization of the Ramsey prop-
erty establishing that a set X ⊆ E∞ is Ramsey if and only if it has the Baire
property with respect to the Ellentuck topology, and X ⊆ E∞ is Ramsey null if
and only if it is meager with respect to this topology.
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Theorem 1.5 ([1], [23]). The triple (E∞,≤, r) is a topological Ramsey space, that
is, every Baire subset of E∞ is Ramsey and every meager subset of E∞ is Ramsey
null.

The proof of Theorem 1.5 consists in showing that (E∞,≤, r) satisfies the axioms
A.1 to A.4 of [23, Chapter 5], that we will state below. Then the relation between
the Ramsey property and the Baire property follows from the theory of Ramsey
spaces developed by Todorcevic in [23]; in particular, Theorem 2.2 stated below.

The following combinatorial principle, corresponding to axiom A.4, is of special
interest.
Lemma 1.6 ([23]). Let [a,E] be a nonempty basic set of E∞, let n be the length
of a and let O a family of members of AE∞ of length n + 1. Then there is an
F ∈ [a,E] such that rn+1[a, F ] is contained in O or is disjoint from O.

The Ramsey property and the abstract Baire property of subsets of E∞ can be
localized on a collection H ⊆ E∞. We introduce now the corresponding definitions.
Definition 1.7. Given a nonempty family H ⊆ E∞, a set X ⊆ E∞ is said to be
H-Ramsey if for every nonempty [a,A] with A ∈ H there exists B ∈ H∩ [a,A] such
that [a,B] ⊆ X or [a,B] ∩ X = ∅.

Likewise, a set X ⊆ E∞ is said to be H-Ramsey null if for every nonempty [a,A]
with A ∈ H there exists B ∈ H ∩ [a,A] such that [a,B] ∩ X = ∅.

The H-Ramsey property of subsets of E∞ is a localized version of the dual
completely Ramsey property presented in [1].

The abstract Baire property can be localized on a family H in a similar way.
Definition 1.8. Given a nonempty family H ⊆ E∞, a set X ⊆ E∞ has the H-Baire
property if for every basic set [a,A] 6= ∅ with A ∈ H there is ∅ 6= [b, B] ⊆ [a,A]
with B ∈ H such that [b, B] ⊆ X or [b, B]∩X = ∅. If the second possibility always
occurs, then X is said to be H-nowhere dense.

Ellentuck shows in [6] that the collection of all subsets of N[∞] = {A ⊆ N :
A is infinite} that are completely Ramsey is exactly the algebra of Baire subsets
of N[∞] with respect to the Ellentuck topology.

In [20], Mathias introduces the notion of happy family (or selective coideal) of
subsets of N and localizes the notion of completely Ramsey subsets of N[∞] to such
families. He proves that analytic sets are U-Ramsey when U is a Ramsey ultrafilter
and generalizes this result for arbitrary happy families.

Farah, in [7], gives an answer to the question of Todorcevic about what are
the combinatorial properties of a family H ⊆ N[∞] under which Borel subsets
of N[∞] are H-Ramsey. A condition on H which is weaker than selectivity —
the notion called semiselectivity — turned out to be enough. Farah shows that
the semiselectivity of H is enough to make the H-Ramsey property equivalent to
the abstract Baire property with respect to H, and also shows that this latter
equivalence characterizes semiselectivity on N[∞].

In [21], a step toward the understanding of the local Ramsey property within
the most general context of topological Ramsey spaces is taken (see also [4]).
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In this article, we study the notions of selective and semiselective coidealH ⊆ E∞
as well as conditions for H that will enable us to make the structure (E∞,H,≤, r)
a Ramsey space, a notion introduced in [23, Chapter 4]. We study versions of
the Ramsey property and the Baire property localized on a coideal of E∞, and also
study forcing notions related to a coideal H which will satisfy versions of properties
of the corresponding forcing notions in the realm of the space of infinite subsets
of N, complementing results from [1, 7, 12, 21, 23].

The article is organized as follows: Section 2 is devoted to stating the proper-
ties of the space E∞ that make it a topological Ramsey space. In Section 3 we
characterize the Ramsey property of subsets of E∞ in terms of infinite games. In
Sections 4 and 5, we define and prove some facts about selective and semiselective
coideals of the topological Ramsey space E∞. Section 6 deals with two forcing
notions related to coideals on E∞.

We thank Stevo Todorcevic for valuable conversations on this topic.

2. E∞ as a topological Ramsey space

We have defined the space E∞ of infinite partitions of N and the set of approxima-
tions AE∞. Each X ∈ E∞ can be identified with the sequence of its approximations
{rn(X)}n∈N. Give AE∞ the discrete topology, and endow AEN∞ with the product
topology; this is the complete metric space of all the sequences of elements of AE∞.
Then, E∞ is a closed subspace of the product space AEN∞.

The set E∞ with the order relation ≤, the approximation function r, and the
relation ≤fin on AE∞ satisfies the following properties (or axioms) presented by
Todorcevic in [23] (see also [2]):

(A.1) [Metrization]
(A.1.1) For any A ∈ E∞, r0(A) = ∅.
(A.1.2) For any A,B ∈ E∞, if A 6= B then (∃n) (rn(A) 6= rn(B)).
(A.1.3) If rn(A) = rm(B) then n = m and (∀i < n) (ri(A) = ri(B)).

(A.2) [Finitization]
(A.2.1) {b ∈ AE∞ : b ≤fin a} is finite, for every a ∈ AE∞.
(A.2.2) A ≤ B iff (∀n) (∃m) (rn(A) ≤fin rm(B)).
(A.2.3) If a ≤fin b and c @ a then there is d @ b such that c ≤fin d.

Definition 2.1. Given A ∈ E∞ and a ∈ AE∞, the depth of a in A, denoted by
depthA(a), is the only n such that a ≤fin rn(A), if such an n exists; otherwise we
say that depthA(a) is ∞.

(A.3) [Amalgamation] Given a ∈ AE∞ and A ∈ E∞ with depthA(a) = n, the
following holds:
(A.3.1) (∀B ∈ [n,A]) ([a,B] 6= ∅).
(A.3.2) (∀B ∈ [a,A]) (∃A′ ∈ [n,A]) ([a,A′] ⊆ [a,B]).

The last axiom is the following combinatorial principle stated in Lemma 1.6.
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(A.4) [Pigeonhole Principle for E∞] Given a basic set [a,E] 6= ∅ of E∞, let n
be the length of a and O a family of elements of AE∞ of length n+ 1. Then there
is an F ∈ [a,E] such that rn+1[a, F ] is contained in O or is disjoint from O.

These properties make the space (E∞,≤, r) a topological Ramsey space in the
sense of Todorcevic [23, Chapter 5], as stated in Theorem 1.5.

The proof that E∞ satisfies A.4 is non-trivial. A proof based on an infinite
version of the Hales–Jewett theorem for left variable words is given in [23, Lemma
5.69]. This proof is based on the fact that any end extension b ∈ rn+1[a,E] of a
can be coded with a word in the finite alphabet L = {0, . . . , n}.

Todorcevic in [23] develops an abstract theory of topological Ramsey spaces,
and proves the following.

Theorem 2.2 (Abstract Ellentuck theorem; Todorcevic [23]). Any triple (R,≤, r)
with R endowed with the Ellentuck topology and metrically closed in the space of
infinite sequences of approximations to elements of R, and satisfying A.1 to A.4,
is a topological Ramsey space, meaning that every Baire set is Ramsey and every
meager set is Ramsey null.

3. A game characterization of the Ramsey property

We describe an infinite game on E∞ which will be used to characterize the
Ramsey property of subsets of the space of infinite partitions (E∞,≤, r), following
ideas of Kastanas in [16] for the Ellentuck space of infinite subsets of N. Similar
ideas for the Ellentuck space can be found in [19] and [5]. Games of this type for
the space of partitions have been used in [10] and [14] (see also [13]) for purposes
other than characterizing the Ramsey property. In [13, Chapter 12], Halbeisen
defines Ramsey partition-families using a similar game.

Given X ⊆ E∞ and ∅ 6= [a,A] ⊆ E∞, we define the game G[a,A](X ) as follows:

Player I plays A1 ∈ [a,A]; player II answers with [a1, B1] such that a @ a1,
|a1| = |a|+ 1 and B1 ∈ [a1, A1]; player I plays A2 ∈ [a1, B1]; player II then answers
[a2, B2] with a1 @ a2, |a2| = |a1|+1 and B2 ∈ [a2, A2]; player I plays A3 ∈ [a2, B2],
and so on, as shown in the following table:

Player I A1 A2 . . .

Player II [a1, B1] [a2, B2] · · ·

Rules A1 ∈ [a,A] a @ a1, A2 ∈ [a1, B1] a1 @ a2,
|a1| = |a|+ 1, |a2| = |a1|+ 1, · · ·
B1 ∈ [a1, A1] B2 ∈ [a2, A2]

Player I wins the game G[a,A](X ) if the only partition of
⋂∞

n=1[an] belongs to X .
Otherwise, player II wins the game.
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We say that the game G[a,A](X ) is determined if one of the players has a winning
strategy. The concept of strategy is well known (see, for example, [15, Chapter 33])
so we do not give a formal definition, but we can say that a strategy is a function
that tells the player what to play depending on the previous moves of both players.
A strategy is a winning strategy for a player if, using this strategy, the outcome of
the game is a win for this player independently of the moves of the other player.

Theorem 3.1. For all X ⊆ E∞, the following statements are equivalent:
(a) X is Ramsey.
(b) For every [a,A] 6= ∅ the game G[a,A](X ) is determined.

Proof. This result follows from the propositions below. �

Proposition 3.2. Let X ⊆ E∞ and [a,A] 6= ∅ be given. Then, player I has a
winning strategy in the game G[a,A](X ) if and only if there is H ∈ [a,A] such that
[a,H] ⊆ X .

Proof. Suppose there is a partition H ∈ [a,A] such that [a,H] ⊆ X . Then, it is
easy to define a winning strategy for player I: play H in the first move, and then
play according to the rules. Indeed, if 〈H; [a1, B1];A2; [a2, B2]; . . .〉 is a run of the
game, it is clear that player I wins since the only partition of

⋂∞
n=1[an] is in [a,H].

Suppose now that player I has a winning strategy σ in the game G[a,A](X ).
Without loss of generality suppose, to simplify the argument, that a = ∅. We
construct recursively a decreasing sequence of partitions {An}∞n=1 as follows:

Stage 1. Let A1 = σ〈∅〉, thus the partition A1 is the first move of player I
following the strategy σ, and A1 ≤ A. Let a1 = r1(A1).

Suppose that at stage i for each 1 ≤ i ≤ n, we have defined partitions Ai and
approximations ai = ri(Ai) such that A1 ≥ · · · ≥ An and a1 @ · · · @ an.

Stage n+ 1. Consider the finite set {d ∈ AE∞ : d ≤fin an}. Fix an enumeration
of this set as {d(n,1), . . . , d(n,pn)} with d(n,pn) = rn(An) = an.

We will define partitions C(n,k) ≥ B(n,k) ≥ A(n,k) for each k ≤ pn, such that
C(n,k) ∈ [an] and B(n,k), A(n,k) ∈ [d(n,k)], putting first C(n,0) = B(n,0) = A(n,0) =
C(n,1) = An.

Inductively, suppose that C(n,k), B(n,k) and A(n,k) have been defined. Let
C(n,k+1) ∈ [an, C(n,k)] be such that [d(n,k), C(n,k+1)] = [d(n,k), A(n,k)], where C(n,k+1)
is obtained by splitting a finite number of classes of A(n,k) in the same way as an

is obtained from d(n,k) through splits. Let B(n,k+1) ∈ [d(n,k+1), C(n,k+1)] such that
B(n,k+1) is obtained by amalgamating a finite number of classes of C(n,k+1) in the
same way as d(n,k+1) is obtained from an through amalgamations.

If rm(B(n,k+1)) = d(n,k+1) with m > 0, then we consider the finite sequence
{rj(B(n,k+1))}j<m of proper initial segments of d(n,k+1), and let ρ[d(n,k+1)] be
the partial run of the game given by this sequence. Since {rj(B(n,k+1)) : j <
m} ⊆

⋃
i<n{d ∈ AE∞ : d ≤fin ai}, the partial run ρ[d(n,k+1)] was built in previ-

ous stages of the game, where the consecutive moves of player II are of the form
[rj(B(n,k+1)), B(uj ,vj)] for each j < m. Therefore, for some um < n there is a
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partition A(um,vm) such that σ
〈
ρ[d(n,k+1)]

〉
= A(um,vm), and B(n,k+1) ≤ A(um,vm).

Put A(n,k+1) = σ
〈
ρ[d(n,k+1)];A(um,vm); [d(n,k+1), B(n,k+1)]

〉
.

Now, we define the partition An+1 ≤ An as An+1 = A(n,pn), and let an+1 =
rn+1(An+1); thus an @ an+1, because d(n,pn) = an. This way we obtain the desired
sequences A1 ≥ A2 ≥ · · · in E∞ �A and a1 @ a2 @ · · · in AE∞.

Finally, let H be the unique partition of
⋂∞

n=1[an]. Then H ∈ X , since the run
of the game

〈
A1; [a1, B(1,p1)];A2; [a2, B(2,p2)]; . . .

〉
is obtained by player I using the

winning strategy σ.
We now show that [∅, H] ⊆ X . Indeed, ifD ≤ H then there is a unique increasing

sequence {tn}n∈N ⊆ N such that rn(D) ≤fin rtn(H). This implies that for every
n ∈ N we have that rn(D) = d(tn,kn) for some 1 ≤ kn ≤ ptn

. Hence, if we consider
the run of the game〈

σ
〈
ρ[d(t1,k1)]

〉
; [r1(D), B(t1,k1)];σ

〈
ρ[d(t2,k2)]

〉
; [r2(D), B(t2,k2)]; . . .

〉
,

then it is clear that D is the unique partition of
⋂∞

n=1[rn(D)], and since player I
uses the winning strategy σ in this run of the game, we conclude that D ∈ X . �

The referee has pointed out that Proposition 3.2 follows from the pure decision
property of the dual-Mathias forcing (see [13, Theorem 28.2]). The proof we have
given does not use forcing.

Lemma 3.3. Let [a,B] be a nonempty basic neighborhood of E∞ with a @ B, and
let f : [a,B] → AE |a|+1 and g : [a,B] → E∞ be functions such that a @ f(A) and
g(A) ∈ [f(A), A] for each A ∈ [a,B]. Then, there is some Ef,g ∈ [a,B] with the
property that for every q ∈ AE |a|+1 with a @ q and depthEf,g

(q) < ∞, there is
A ∈ [a,B] such that f(A) = q and [q, Ef,g] ⊆ [q, g(A)].

Proof. Given ∅ 6= [a,B] ⊆ E∞, we construct recursively sequences of partitions
{An}n∈N and {A′n}n∈N in [a,B], with A0 = A′0 = B, such that A′n+1 ≤ An+1 ≤
A′n ≤ An and g(A′n) = An+1 for all n, as follows:

Suppose that we have constructed Ak−1 ≥ A′k−1 for each 1 ≤ k ≤ n and put
An = g(A′n−1), thus An ∈ [f(A′n−1), A′n−1]. Now, let A′n ∈ [a,An] such that A′n is
obtained by amalgamating the class [p|a|+1(An)] to the class of 0 in An. Let An+1 ∈
[f(A′n), A′n] be the partition defined by An+1 = g(A′n); then depthB(f(A′n−1)) <
depthB(f(A′n)).

Let now Ef,g ∈ [a,B] be the partition defined by the following equivalence
classes: the first |a|+ 1 classes of Ef,g are the first |a|+ 1 classes of B, except that
the first of these, the class of 0, will be enlarged. For n > 1, the class |a| + n of
Ef,g is the class |a| + 2 of An−1. At the end of the construction, the rest of N is
amalgamated to the class of 0.

Finally, we verify that the partition Ef,g has the desired properties. Indeed,
if q ∈ r|a|+1[a,Ef,g] then it is clear that q = f(A′n) for some n. Moreover, since
[f(A′n), Ef,g] ⊆ [f(A′n), An+1], we conclude that [q, Ef,g] ⊆ [q, g(A′n)]. �
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Proposition 3.4. Let X ⊆ E∞ and [a,M ] 6= ∅ be given. Then, player II has a
winning strategy in the game G[a,M ](X ) if and only if for every N ∈ [a,M ] there
is H ∈ [a,N ] such that [a,H] ∩ X = ∅.

Proof. Given any N ∈ [a,M ], suppose there is a partition H ∈ [a,N ] such that
[a,H]∩X = ∅, and let a1 = r|a|+1(H). Then, it is easy to define a winning strategy
for player II: if N is the first move of player I, play [a1, H] in the first move, and
then play according to the rules. Indeed, if 〈N ; [a1, H];A2; [a2, B2]; . . .〉 is a run of
the game, it is clear that player II wins since the only partition of

⋂∞
n=1[an] is in

[a,H].
Suppose now that player II has a winning strategy τ in the game G[a,M ](X ) and

let N ∈ [a,M ] be given. Our goal is to define a winning strategy σ for the player I
in the game G[a,N ](E∞ \ X ).

Using Lemma 3.3 iteratively, let us construct recursively a play of the game
G[a,N ](E∞\X ) with consecutive moves of player II given by a sequence {[an, Bn]}∞n=1,
for which we define sequences of functions {fn}∞n=1 and {gn}∞n=1 as well as sequences
of partitions {An}∞n=1 and {Efn,gn

}∞n=1, such that:
(i) [f1(A), g1(A)] = τ〈A〉 for every A ∈ [a,N ].

(ii) [fn+1(A), gn+1(A)] = τ 〈A1; [f1(A1), g1(A1)]; . . . ;An; [fn(An), gn(An)];A〉 for
every A ∈ [an, Bn].

(iii) A1, Ef1,g1 ∈ [a,N ] and An+1, Efn+1,gn+1 ∈ [an, Bn].
(iv) fn(An) = an and Bn ∈ [an, Efn,gn ] ⊆ [an, gn(An)].

Once we have this, we proceed to define a strategy σ for player I in the game
G[a,N ](E∞ \ X ) as follows: play consecutively Efn,gn

in each of the moves, that is
to say, σ〈∅〉 = Ef1,g1 and σ 〈Ef1,g1 ; [a1, B1]; . . . ;Efn,gn

; [an, Bn]〉 = Efn+1,gn+1 .
Finally, let P be the unique partition of

⋂∞
n=1[an]. Then P /∈ X , since the

run of the game 〈A1; [a1, g1(A1)];A2; [a2, g2(A2)]; . . .〉 is obtained by player II using
the winning strategy τ in G[a,M ](X ). Hence, if we consider the run of the game
〈Ef1,g1 ; [a1, B1];Ef2,g2 ; [a2, B2]; . . .〉, which is obtained by player I using the strat-
egy σ in G[a,N ](E∞ \X ), then we deduce that σ is really a winning strategy for the
player I in the game G[a,N ](E∞ \ X ) because P ∈ E∞ \ X .

Therefore, by Proposition 3.2, we conclude that there is a partition H ∈ [a,N ]
such that [a,H] ⊆ E∞ \ X and consequently [a,H] ∩ X = ∅. �

Infinite partitions of N can be coded by infinite subsets of N (real numbers), so
the games defined in this section can be thought as games where the players play
real numbers. By Theorem 3.1, ADR, the axiom of determinacy for real numbers,
implies that every X ⊆ E∞ is Ramsey. It is an old open problem if AD, the axiom
of determinacy, implies that every subset of N∞ is Ramsey.

4. Coideals on E∞
A coideal on the set N is a nonempty collection of infinite subsets of N whose

complement in P(N) is an ideal of sets. Thus, a coideal on N is closed under
supersets and if A ∪ B is in the coideal, then at least one of the sets A and B
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belongs to the coideal. We propose now a definition of coideal of the space E∞ of
infinite partitions of N.

Definition 4.1. A family H ⊆ E∞ is a coideal if it satisfies:
(i) {{n} : n ∈ N} ∈ H.
(ii) Let A,B ∈ E∞. If A ≤∗ B and A ∈ H then B ∈ H.
(iii) (A.4 mod H) Let A ∈ H and a ∈ AE∞ � A be given. For all O ⊆

AE |a|+1 there exists B ∈ [depthA(a), A] ∩ H such that r|a|+1[a,B] ⊆ O
or r|a|+1[a,B] ∩ O = ∅.

A family H ⊆ E∞ is said to be closed under finite changes if whenever two
partitions X,Y ∈ E∞ are such that one of them is obtained from the other by
amalgamating a finite number of classes, then X ∈ H if and only if Y ∈ H.

Proposition 4.2. If H ⊆ E∞ is a coideal, then
(i) H is closed under finite changes.
(ii) (A.3 mod H) For all A ∈ H and a ∈ AE∞ �A, the following holds:

(a) [a,B] ∩H 6= ∅ for all B ∈ [depthA(a), A] ∩H.
(b) If B ∈ H �A and [a,B] 6= ∅ then there exists A′ ∈ [depthA(a), A] ∩ H

such that ∅ 6= [a,A′] ⊆ [a,B].

Proof. Let H ⊆ E∞ be a coideal.

(i) If A,B ∈ E∞ are such that A is a finite modification of B, then A ≤ B and
B ≤∗ A. So, A ∈ H if and only if B ∈ H.

(ii) Let A ∈ H and let a ∈ AE∞ � A be such that depthA(a) = n; so,
a ≤fin rn(A). Given B ∈ [n,A] ∩ H, let B∗ ∈ [a,B] such that it is obtained
by amalgamating a finite number of classes of B the same way as a is obtained
from rn(A) by amalgamating classes. Since H is closed under finite changes and
B∗ is a finite modification of B, it follows that B∗ ∈ H, concluding (a).

If B ∈ H � A is such that depthB(a) = m, then a ≤fin rm(B) ≤fin rn(A). Let
A′ ∈ [n,A] be such that [m,B] = [rm(B), A′], where A′ is obtained by splitting a
finite number of classes of B in the same way as rn(A) is obtained from rm(B) by
splitting classes. Then B ≤ A′ and so A′ ∈ H. Since [rm(B), A′] = [rm(B), B] and
a ≤fin rm(B), we have ∅ 6= [a,A′] ⊆ [a,B], concluding (b). �

Clearly, the space E∞ is itself a coideal.

Example 4.3. We give now an example of a coideal H properly contained in E∞.
LetH ⊆ E∞ be the collection of all infinite partitions of N with infinitely many finite
classes. To see that H is a coideal we only indicate how to show that H satisfies
A.4 mod H, since the rest of the clauses of the definition are easily verified.

Let A ∈ H and a = rn(A) be given, and let O ⊆ AE |a|+1. Form B ∈ [a,A]
amalgamating to the class of 0 all the infinite classes of A with minimum element
greater than pn(A). Then B ∈ [a,A] ∩ H. As in the proof of the Pigeonhole
Principle for E∞ ([23, Lemma 5.69]), a partition F ∈ [a,B]∩H can be constructed
such that r|a|+1[a, F ] is contained in O or is disjoint from O.
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For this coideal, there are partitions X,Y /∈ H such that X t Y ∈ H. In fact,
let X ∈ E∞ be an infinite partition of N such that all of its classes are infinite. Let
X = {xn : n ∈ N} be an enumeration of the classes of X, for example putting xn

equal to the class of pn(X). For every n let xn = {xn(i) : i ∈ N} be the increasing
enumeration of the class xn. Consider now the partition Y ∈ E∞ defined by
Y = {yi : i ∈ N} where yi = {xn(i) : n ∈ N}. Then, Y is an infinite partition of N
and all of its classes are infinite. Thus, X,Y /∈ H, but X t Y = {{n} : n ∈ N},
which is in H since all of its classes are finite. This explains why we did not define
coideals using the operation t of the lattice of partitions.

On the other hand, observe that if H ⊆ E∞ is a coideal, then the collection
G = {A ⊆ N : (∃X ∈ H) (p(X) ⊆∗ A)}

is a coideal on N. If A∪B ∈ G, then there is X ∈ H such that p(X) ⊆∗ A∪B. Now,
(p(X)\{0}) ⊆ AE1, so by A.4 mod H there is Y ∈ H�X such that (p(Y )\{0}) ⊆ A
or (p(Y ) \ {0}) ∩A = ∅. So, A ∈ G or B ∈ G.

Halbeisen and Matet have introduced the following notion of filter of partitions
(see [17, 18, 12, 14]).
Definition 4.4. A nonempty family of partitions F ⊆ E∞ is a filter if it satisfies,
for every X,Y ∈ E∞, the following conditions:

(a) If X ≤ Y and X ∈ F , then Y ∈ F .
(b) X,Y ∈ F implies that X u Y ∈ F .

The relation between these filters and the coideals defined here is interesting
and needs further exploration.

4.1. Selective coideals. We start with some considerations about the notation
[a,A] used for basic sets. If A ∈ E∞ and a ∈ AE∞, even if depthA(a) =∞, we can
use the notation [a,A] in case a can be obtained from A by splitting a finite number
of classes. So, [a,A] is the collection of all partitions B such that a = rn(B) for
some n and each one of the classes [pm(B)] of B with m > n is a union of classes
of A.
Definition 4.5. Let [a,A] be a nonempty basic set of E∞. Let A = {An}n∈N
be a decreasing sequence of partitions in [a,A]. We say that B ∈ [a,A] is a
diagonalization of A, if for every b ∈ AE∞ �B such that a v b, we have [b, B] ⊆
[b, AdepthA(b)].

Matet in [17] gives a definition of diagonalization of a decreasing sequence of
partitions in E∞. The two definitions are closely related. If we change slightly
our definition using dom(b) instead of depthA(b), the relation becomes clearer: if
an element of E∞ is a diagonalization of the decreasing sequence {An}n∈N in this
sense then it is a diagonalization according to the definition given by Matet. Our
version is designed to work well in the calculations of the next section.
Definition 4.6. A coideal H on E∞ is selective if for every [a,A] 6= ∅ with A ∈ H,
every decreasing sequence A = {An}n∈N of partitions in [a,A]∩H has a diagonal-
ization in [a,A] ∩H.
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Proposition 4.7. The space E∞ is a selective coideal.

Proof. It is enough to prove that E∞ admits diagonalizations. Given a nonempty
basic set [a,A], let X0 ≥ X1 ≥ X2 ≥ . . . be a decreasing sequence of partitions in
[a,A].

We define a diagonalization D in [a,A] for this sequence by describing its classes.
The first |a|+ 1 classes of D are the first |a|+ 1 classes of X0, except that the first
class is [p0(X0)]∪R where R is a subset of N that will be described later. The rest
of the classes [pi(D)] are defined recursively as follows: suppose the class [pi(D)]
has been defined, then ri(D) is already determined; so, if n = depthA(ri(D)), then
we take [pi+1(D)] = [pi+1(Xn)]. Finally, R = N \ ([p0(X0)] ∪

⋃∞
i=1[pi(D)]) is the

set of all integers that do not belong to any of the classes defined. �

The argument of the proof of the previous proposition can be used to prove that
the coideal H in Example 4.3 is in fact a selective coideal on E∞.

Indeed, given [a,A] 6= ∅, if A0 ≥ A1 ≥ A2 ≥ · · · is any decreasing sequence in
H∩ [a,A], then we consider the sequence A′0 ≥ A′1 ≥ A′2 ≥ · · · in H∩ [a,A] defined
as follows: for every n ∈ N, the partition A′n ∈ [a,An] is obtained from An by
amalgamating to its first class all the infinite classes of An that are above p|a|(An),
therefore A′n ∈ H. Now, we form the partition D ∈ H ∩ [a,A], requiring that the
first |a| + 1 classes of D, except the first one, are also the first |a| + 1 classes of
A′0, and the other classes of D are defined as follows: if [pi(D)] has been built, we
take [pi+1(D)] = [pi+1(A′m)] with m = depthA(ri(D)). At last, it should be noted
that for every b ∈ AE∞ � D such that a v b, if n = depthA(b) then it is true that
[b,D] ⊆ [b, A′n] ⊆ [b, An].

Proposition 4.8. Let H be a coideal on E∞. Then, H is selective if and only if it
has the following two properties:

(p) Given A ∈ H and a decreasing sequence {An}n∈N of partitions in H � A,
there is B ∈ H � A such that B ≤∗ An for each n ∈ N.

(q) Given X ∈ H and an infinite partition of p(X) into finite pieces, there is
Y ∈ H � X such that p(Y ) has at most one element in each piece.

Proof. First of all, by Fact 1.1, it is clear that every selective coideal H on E∞
satisfies (p), so let us check that it also satisfies (q). Given X ∈ H, let p(X) =⋃

k∈N Fk be any infinite partition of p(X) where each Fk is finite. For every n ∈ N,
let In be the finite set given by In = {k ∈ N : Fk ∩ {0, . . . , pn(X)} 6= ∅}, and let
Xn ∈ H � X be the finite modification of X obtained by amalgamating the classes
{[pk(X)] : k ∈ In}. Therefore, {Xn}n∈N is a decreasing sequence of partitions
in H � X, and by the selectivity of H this sequence admits a diagonalization
Y ∈ H � X which satisfies |p(Y ) ∩ Fk| ≤ 1 for all k.

Conversely, suppose that H has the properties (p) and (q). Let [a,A] 6= ∅ be a
basic set of E∞, and without loss of generality suppose, to simplify the argument,
that a = ∅. If A = {An}n∈N is any decreasing sequence of partitions in H � A,
then by the property (p), there is a partition B ∈ H � A such that B ≤∗ An for
each n.
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Define a strictly increasing sequence {nk}k∈N by n0 = 0 and nk+1 = min{i ∈
N : B/i ≤ Ank

}+ (k + 1), where B/i ≤ Ank
means that every class [pm(B)] of B

with m ≥ i is a union of classes of Ank
. For every k ∈ N, let Fk be the finite

set given by Fk = {pi(B) : i ∈ [nk, nk+1)}, and consider now the infinite partition
p(B) =

⋃
k∈N Fk. Then by the property (q), there is a partition C ∈ H � B such

that |p(C) ∩ Fk| ≤ 1 for all k.
Finally, let O ⊆ AE1 � C be the collection of 1-approximations of C with domain

in some set of the form F2k, so that

O = {pn(C) : n > 0 and (∃k) pn(C) ∈ {pi(B) : i ∈ [n2k, n2k+1)}}.

By A.4 mod H, there is a partition D ∈ H � C such that either (p(D) \ {0}) ⊆ O
or (p(D) \ {0}) ∩ O = ∅. In any case, for every b ∈ AE∞ � D with depthA(b) = n
it is true that [b,D] ⊆ [b, An]. Thus, H is a selective coideal on E∞. �

The properties (p) and (q) of the previous proposition are the natural dualiza-
tions of the properties used to characterize selectivity of coideals on N (see [23,
Lemma 7.4]).

Using games, Halbeisen defines Ramsey families on N and also their dualizations,
called Ramsey partition-families on E∞. Every Ramsey family is a selective coideal
on N (see [13, Fact 11.18]). The proof of this fact can be adapted to show that
every Ramsey partition-family is a selective coideal on E∞.

4.2. Semiselective coideals. We define now semiselective coideals of E∞. This
is a weakening of the notion of selectivity that will be used to develop the local
Ramsey theory of the space E∞.

Definition 4.9. Let H ⊆ E∞ be a coideal and S ⊆ H. A subset D ⊆ H is dense
open in S if D ⊆ S and

(1) (∀M ∈ S) (∃N ∈ D) (N ≤M),
(2) (∀M ∈ S) (∀N ∈ D) (M ≤ N →M ∈ D).

Definition 4.10. Let H ⊆ E∞ be a coideal. Given A ∈ H and a collection D =
{Da}a∈AE∞�A such that each Da is dense open in H ∩ [depthA(a), A], we say that
B ≤ A is a diagonalization of D if there exists a family A = {Aa}a∈AE∞�A ⊆ H�A,
with each Aa ∈ Da, such that for every a ∈ AE∞ � B, we have [a,B] ⊆ [a,Aa].

Definition 4.11. We say that a coideal H on E∞ is semiselective if for every
A ∈ H, every collection D = {Da}a∈AE∞�A such that each Da is dense open in
H ∩ [depthA(a), A], and every B ∈ H �A, there exists C ∈ H �B such that C is a
diagonalization of D.

We show now that selectivity implies semiselectivity.

Lemma 4.12. Given a coideal H on E∞ and A ∈ H, for every {Da}a∈AE∞�A such
that each Da is dense open in H ∩ [depthA(a), A] there exists {An}n∈N ⊆ H � A
such that An ∈ Da for all a ∈ AE∞ �A with depthA(a) = n.
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Proof. For every n ∈ N, list {a ∈ AE∞ : a ≤fin rn(A)} as An = {an
1 , a

n
2 , . . . , a

n
kn
}.

Since each Da is dense open in H∩ [depthA(a), A], using A.3 mod H we can choose
A1,1 ∈ Da1

1
�A, A1,2 ∈ Da1

2
�A1,1, . . . , A1,k1 ∈ Da1

k1
�A1,k1−1. Again, we can choose

A2,1 ∈ Da2
1
�A1,k1 , A2,2 ∈ Da2

2
�A2,1, . . . , A2,k2 ∈ Da2

k2
�A2,k2−1. And so on. For

every n ∈ N, let An = An,kn . Then {An}n∈N is as required. �

Theorem 4.13. If H ⊆ E∞ is a selective coideal then H is semiselective.

Proof. Consider A ∈ H and let D = {Da}a∈AE∞�A be such that each Da is
dense open in H ∩ [depthA(a), A]. Fix B ∈ H � A. Then Da is dense open
in H ∩ [depthA(a), B], for all a ∈ AE∞ � B. Using Lemma 4.12 we can build
A = {An}n∈N ⊆ H � B such that An ∈ Da for every a ∈ AE∞ � B with
depthA(a) = n. By selectivity, there exists C ∈ H ∩ [∅, B] which diagonalizes A.
Thus for every b ∈ AE∞ � C with depthA(b) = n we have [b, C] ⊆ [b, An] ⊆ [b, Ab].
Hence, H is semiselective. �

5. Semiselectivity and the Ramsey property

We will prove in this section that the families of H-Ramsey sets and H-Baire
sets coincide if H is semiselective on E∞ (see Theorem 5.6 below).

The following combinatorial forcing will be used:

Definition 5.1. Fix F ⊆ AE∞ and let H ⊆ E∞ be a coideal. Given A ∈ H and
a ∈ AE∞, we say that A accepts a if for every B ∈ [a,A] there exists n ∈ N such
that rn(B) ∈ F ; we say that A rejects a if there is no B ∈ [a,A] ∩ H such that B
accepts a; and we say that A decides a if A either accepts or rejects a.

Lemma 5.2. The combinatorial forcing has the following properties:
(1) If A ∈ H accepts a then every B ∈ H�A with [a,B] 6= ∅ accepts a.
(2) If A ∈ H rejects a, then every B ∈ H�A with [a,B] 6= ∅ rejects a.
(3) For every A ∈ H and every a ∈ AE∞ �A there exists B ∈ [a,A] ∩ H which

decides a.
(4) If A ∈ H accepts a then A accepts every b ∈ r|a|+1[a,A].
(5) If A ∈ H rejects a then there exists B ∈ [a,A] ∩ H such that A does not

accept any b ∈ r|a|+1[a,B].

Proof. (1)–(4) follow easily from the definitions. Let us prove (5). Suppose that
A ∈ H rejects a. Let O = {b ∈ AE |a|+1 : A accepts b}. By A.4 mod H, there
exists B ∈ H ∩ [a,A] such that r|a|+1[a,B] ⊆ O or r|a|+1[a,B] ⊆ Oc. If the first
alternative holds, then take C ∈ H ∩ [a,B] and let b = r|a|+1(C). Then b ∈ O
and therefore A accepts b. Since C ∈ [b, A], there exists n such that rn(C) ∈ F .
Therefore B accepts a, because C is arbitrary. But this contradicts that A rejects a.
Hence, r|a|+1[a,B] ⊆ Oc and we are done. �
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Lemma 5.3. Let H ⊆ E∞ be a semiselective coideal. Given A ∈ H and a ∈ AE∞�A,
there exists D ∈ [a,A] ∩H that decides every b ∈ AE∞ �D with a v b.

Proof. We prove the case a = ∅. The general case follows from a simple modification
of the argument. For every b ∈ AE∞ �A define

Db = {C ∈ H ∩ [depthA(b), A] : C decides b}.

By (1), (2) and (3) of Lemma 5.2, each Db is dense open in H∩ [depthA(b), A]. By
semiselectivity, there existsD ∈ H�A which diagonalizes the collection {Db}b∈AE∞�A.
By (1) and (2) of Lemma 5.2, D decides every b ∈ AE∞ �D. �

Now, we adapt the semiselective Galvin lemma (see [8, 7]) to the space of infinite
partitions of N.

Lemma 5.4. Given F ⊆ AE∞ and a semiselective coideal H ⊆ E∞, for every
A ∈ H and every a ∈ AE∞ �A, there exists B ∈ H ∩ [a,A] such that one of the
following holds:

(1) AE∞ � [a,B] ∩ F = ∅, or
(2) (∀C ∈ [a,B]) (∃ n ∈ N) (rn(C) ∈ F).

Proof. Consider D ∈ [a,A] ∩ H as in Lemma 5.3. If D accepts a, condition (2)
holds and we are done. So assume that D rejects a, and for b ∈ AE∞ �D such that
a v b, define

Db = {C ∈ H ∩ [depthA(b), D] : C rejects every b′ ∈ r|b|+1[b, C]}

if D rejects b, and Db = H∩[depthA(b), D], otherwise. By (2) and (5) of Lemma 5.2
each Db is dense open in H∩ [depthA(b), D]. By semiselectivity, choose B ∈ H�D
such that for all b ∈ AE∞ � B there exists Cb ∈ Db with [b, B] ⊆ [b, Cb]. By
induction on the length of b, with a v b, and using that B is a diagonalization of
the collection {Db}b∈AE∞�D, it can be shown that B rejects every b ∈ AE∞ � B
with a v b. In fact, if D rejects b, then Cb rejects all b′ ∈ r|b|+1[b, Cb]. Hence, B
satisfies that AE∞ � [a,B] ∩ F = ∅. This completes the proof. �

Now, we give an application of Lemma 5.4. Recall that the basic metric open
subsets of E∞ are of the form [b] = {A ∈ E∞ : b @ A}, where b @ A means that
b = rn(A) for some n ∈ N.

Theorem 5.5. Suppose that H ⊆ E∞ is a semiselective coideal. Then the metric
open subsets of E∞ are H-Ramsey.

Proof. Let X be a metric open subset of E∞ and fix a nonempty [a,A] with A ∈ H.
Without loss of generality, we can assume a = ∅. Since X is open, there exists
F ⊆ AE∞ such that X =

⋃
b∈F [b]. Let B ∈ H�A be as in Lemma 5.4. If (1) holds

then [∅, B] ⊆ X c and if (2) holds then [∅, B] ⊆ X . �

The next theorem is the dual version of the semiselective Ellentuck theorem of [7]
(see also [23]). It illustrates the strength of semiselective coideals of the space E∞.
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Theorem 5.6. Let H ⊆ E∞ be a semiselective coideal and let X ⊆ E∞. Then, X
is H-Ramsey if and only if X is H-Baire.

Proof. Let X be an H-Baire subset of E∞. We will show that X is H-Ramsey. Fix
A ∈ H. We prove the result for [∅, A] without loss of generality, that is, we will
show that there is A′ ≤ A such that [∅, A′] is contained in X or is disjoint from X .

For a ∈ AE∞ �A define

Da = {B ∈ [depthA(a), A] ∩H : [a,B] ⊆ X or [a,B] ⊆ X c

or [(∀C ∈ [a,B]) ([a,C] ∩ X 6= ∅ and [a,C] ∩ X c 6= ∅)]}.

It is easy to see that each Da is dense open inH∩[depthA(a), A]. By semiselectivity,
choose B ∈ H �A which diagonalizes the collection {Da}a∈AE∞�A. Let F0 = {a ∈
AE∞ � B : [a,B] ⊆ X} and F1 = {a ∈ AE∞ � B : [a,B] ⊆ X c}. Consider
B0 ∈ H � B as in Lemma 5.4 applied to F0 and B. If (2) of Lemma 5.4 holds
then [∅, B0] ⊆ X and we are done. So assume that (1) holds. That is, (AE∞ �
B0) ∩ F0 = ∅. Now consider B1 as in Lemma 5.4 applied to F1 and B0. Again,
if (2) holds then [∅, B1] ⊆ X c and we are done. Notice that (AE∞ �B1) ∩ F1 6= ∅
because (AE∞ �B1) ∩ F0 = ∅ and X is H-Baire. So (2) holds. This concludes the
proof. �

From the previous proof it follows that if H ⊆ E∞ is a semiselective coideal and
X ⊆ E∞, then X is H-Ramsey null if and only if X is H-nowhere dense.

Lemma 5.7. If H ⊆ E∞ is a semiselective coideal, then the H-Ramsey null sets
form a σ-ideal.

Proof. Let {Xn}n∈N be a sequence of H-Ramsey null subsets of E∞, and let [a,A]
be a nonempty basic subset of E∞ with A ∈ H. We continue the proof assuming
that a = ∅, since the general case is proved the same way. For every b ∈ AE∞ �A,
let

Db = {B ∈ [depthA(b), A] ∩H : (∀n ≤ |b|) ([b, B] ∩ Xn = ∅)}.
Each Dn is dense open in [depthA(b)] ∩ H, and so there is C ∈ H � A and a
collection {Ab}b∈AE∞�A such that Ab ∈ Db for every b and [b, C] ⊆ [b, Ab] for every
b ∈ AE∞ � C. Therefore, [∅, C] ∩ Xn = ∅ for every n ∈ N. Thus,

⋃
n∈N Xn is

H-Ramsey null. �

It can also be shown that if H ⊆ E∞ is a semiselective coideal, the H-Ramsey
sets form a σ-algebra of subsets of E∞.

We will now show that semiselectivity is in some sense the optimal property
that a coideal must satisfy in order to get the equivalence in the statement of
Theorem 5.6. First we give two characterizations of semiselectivity.

Proposition 5.8. A coideal H on E∞ is semiselective if and only if for every
A ∈ H and every sequence D = {Dn}n∈N with each Dn dense open in [n,A] ∩ H,
for all B ∈ H �A there is C ∈ H �B and a sequence {An}n∈N with An ∈ Dn for
every n, such that [a,C] ⊆ [a,An] for every a ∈ AE∞ �C with depthA(a) = n.
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Proof. Let H be a semiselective coideal, A ∈ H, and D = {Dn}n∈N with each
Dn dense open in [n,A] ∩ H. Define Da = Dn if depthA(a) = n. Since H is
semiselective, for every B ∈ H �A there is C ∈ H �B and {Aa}a∈AE∞�A with each
Aa ∈ Da = Dn if depthA(a) = n, such that [a,C] ⊆ [a,Aa] for every a ∈ AE∞ �C.

For every n, put An =
d
{Aa : a ∈ AE∞ � C and depthA(a) = n}. Notice

that An ∈ E∞ since {a ∈ AE∞ : depthA(a) = n} is finite and C ≤∗ Aa for every
a ∈ AE∞ � C. Then An ∈ Dn since Dn is dense open in [n,A]∩H. Since for every
a ∈ AE∞ �C with depthA(a) = n, [a,C] ⊆ [a,Aa], we have that for every partition
X in [a,C], each class of X whose minimum is greater than pn(X) is a union of
classes of Aa, and this holds for each a with depthA(a) = n. This implies that each
of those classes is a union of classes of An, and therefore [a,C] ⊆ [a,An].

Conversely, let A ∈ H and {Da}a∈AE∞�A with each Da dense open in H ∩
[depthA(a), A]. For every n ∈ N define Dn =

⋂
depthA(a)=nDa, so Dn is dense open

in H∩ [n,A] since {a ∈ AE∞ : depthA(a) = n} is finite. Then, for every B ∈ H�A
there is C ∈ H � B and a sequence {An}n∈N, with each An ∈ Dn, such that for
every a ∈ AE∞ �C with depthA(a) = n, we have [a,C] ⊆ [a,An], and An ∈ Da.
Thus H is a semiselective coideal. �

We will now use two properties of a coideal H ⊆ E∞ to characterize semiselec-
tivity. These are the dualizations of the corresponding properties of semiselective
coideals on N (see [23, Lemma 7.9]).

Proposition 5.9. A coideal H on E∞ is semiselective if and only if it has the
following two properties:

(wp) For every A ∈ H and every sequence D = {Dn}n∈N with each Dn dense
open in [n,A] ∩ H, there is B ∈ H � A and a sequence {An}n∈N with
An ∈ Dn for every n, such that B ≤∗ An for every n.

(q) Given X ∈ H and an infinite partition of p(X) into finite pieces, there is
Y ∈ H�X such that p(Y ) has at most one element in each piece.

Proof. Let H be a semiselective coideal. Then by Fact 1.1 and Proposition 5.8,
H has property (wp). We now prove it has property (q). Let X ∈ H and let
p(X) =

⋃
n∈N Fn be an infinite partition of p(X) into finite pieces. For each n, let
Dn = {Y ∈ [n,X] ∩H : |p(Y ) ∩ Fi| ≤ 1 for every i ≤ n}.

Then Dn is dense open in [n,X]∩H. Since H is a semiselective coideal, by Propo-
sition 5.8 there is C ∈ H �X and a sequence {An}n∈N with An ∈ Dn for every n,
such that for every a ∈ AE∞ �C with depthA(a) = n, [a,C] ⊆ [a,An]. Then p(C)
has at most one element in each piece Fn.

Conversely, suppose that H has properties (wp) and (q). Let A ∈ H and let
{Dn}n∈N be a sequence such that for each n, Dn is dense open in [n,A]∩H. Then,
by (wp) there is B ∈ H�A and a sequence {An}n∈N with An ∈ Dn for every n, such
that B ≤∗ An for every n. So, for every n there is in ∈ N such that B/in ≤ An; in
other words, every class [pm(B)] of B with m ≥ in is a union of classes of An.

Define a strictly increasing sequence {mi}i∈N by m0 = 0 and mk+1 the least
m > mk such that in ≤ m for every n ≤ mk.
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Consider now the infinite partition

p(B) =
⋃
k∈N
{pi(B) : i ∈ [mk,mk+1)}.

By property (q), there is C ∈ H�B such that for every k,
| p(C) ∩ {pi(B) : i ∈ [mk,mk+1)}| ≤ 1.

Let O ⊆ AE1 � C be the collection of 1-approximations of C with domain in an
even numbered interval [pm2k

(B), pm2k+1(B)). So,
O = {pn(C) : n > 0 and (∃k) pn(C) ∈ [pm2k

(B), pm2k+1(B))}.
By A.4 mod H there is D ∈ H � C such that pn(D) ∈ O for every n > 0 or
pn(D) /∈ O for every n > 0. Then for every a ∈ AE∞ �D, with depthA(a) = n,
[a,D] ⊆ [a,An]. Thus, by Proposition 5.8, H is a semiselective coideal on E∞. �

Proposition 5.10. If H ⊆ E∞ is a coideal that fails to satisfy property (q), then
there is an H-Baire subset of E∞ that is not H-Ramsey.

Proof. If H does not satisfy property (q), there is X ∈ H and an infinite partition
p(X) =

⋃
n∈N Fn into finite pieces for which there is no Y ∈ H � X such that

|p(Y ) ∩ Fn| ≤ 1 for every n. Let
B = {Y ∈ E∞ : (∃n) |p(Y ) ∩ Fn| ≥ 2}.

Notice that B is a metrically open subset of E∞, and therefore it is H-Baire.
But B is not H-Ramsey, since for every Y ∈ H�X we have that [∅, Y ]∩B 6= ∅ and
[∅, Y ] 6⊆ B. �

Proposition 5.11. If H ⊆ E∞ is a coideal that fails to satisfy property (wp), then
the ideal of H-Ramsey null sets is not a σ-ideal.

Proof. Fix a sequence {Dn}n∈N and A ∈ H witnessing the failure of (wp). Then
there is no B ∈ H�A such that for all n there is An ∈ Dn with B ≤∗ An.

For every n let
Xn = {Y ∈ [n,A] : (∀X ∈ Dn) (Y 6≤∗ X)}.

Each Xn is H-Ramsey null, because Dn is dense open in [n,A] ∩H. But
⋃

n∈N Xn

is not H-Ramsey null, since for every B ∈ [∅, A] there is some n such that for all
X ∈ Dn, B 6≤∗ X. �

To conclude this section we present a notion of Ramsey coideal of E∞ and its
relation to the concept of semiselectivity.

Definition 5.12. A coideal H on E∞ is Ramsey if for every A ∈ H and every
partition f : AE2 �A → {0, 1}, there exists B ∈ H �A such that f is constant on
AE2 �B.

The following is a local version of Theorem 1.6 from [21], which in turn is an
abstract version of Ramsey’s Theorem from [22]:

Theorem 5.13. Every semiselective coideal H ⊆ E∞ is Ramsey.
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Proof. Let A ∈ H and f : AE2 → {0, 1} be given. For a ∈ AE1 �A, define

Da = {B ∈ [depthA(a), A] ∩H : f is constant on r2[a,B]};

for all other cases, put Da = H ∩ [depthA(a), A].
Using A.4 mod H in the case a ∈ AE1 �A, it is easy to prove that each Da is

dense open in H∩ [depthA(a), A]. By semiselectivity, there exists B1 ∈ H�A which
diagonalizes the collection {Da}a∈AE∞�A. Notice that for every a ∈ AE1 �B1, there
exists ia ∈ {0, 1} such that f takes constant value ia on r2[a,B1]. Now, consider
the partition g : AE1 �B1 → {0, 1} defined by g(a) = ia. By A.4 mod H there exists
B ∈ H ∩ [∅, B1] such that g is constant on r1[∅, B] = AE1 �B. But B ≤ B1 ≤ A,
so B ∈ H�A as required. �

6. Semiselectivity and forcing

In [10], Halbeisen presents a detailed study of forcing notions related to the space
of partitions of N. In this section we will consider the localization of these forcing
notions to coideals and study properties of the forcing notions thus obtained.

For this section, some familiarity with the main ideas of forcing will be conve-
nient.

6.1. Forcing with (H,≤∗). Given a coideal H ⊆ E∞ we will consider the pair
(H,≤∗), where ≤∗ is the quasi-order “almost coarser” defined in the introduction.

Recall that for A,B ∈ E∞, A ≤∗ B if there exists a ∈ AE∞ � A such that
[a,A] ⊆ [a,B], according to Fact 1.1.

We view (H,≤∗), for a semiselective coideal H, as a forcing notion.
It will be convenient to consider also coideals that are maximal filters.

Definition 6.1. Given a nonempty family of partitions U ⊆ E∞, we say that U is
an ultrafilter if it satisfies the following:

(a) U is a filter on (E∞,≤), that is:
(a.1) For all A,B ∈ E∞, if A ∈ U and A ≤ B then B ∈ U .
(a.2) For all A,B ∈ U , there exists C ∈ U such that C ≤ A and C ≤ B.

(b) If U ′ ⊆ E∞ is a filter on (E∞,≤) and U ⊆ U ′ then U ′ = U . That is, U is a
maximal filter on (E∞,≤).

(c) (A.3 mod U) For all A ∈ U and a ∈ AE∞ � A with depthA(a) = n, the
following holds:

(c.1) (∀B ∈ [n,A] ∩ U) ([a,B] ∩ U 6= ∅).
(c.2) (∀B ∈ [a,A] ∩ U) (∃A′ ∈ [n,A] ∩ U) ([a,A′] ⊆ [a,B]).

(d) (A.4 mod U) Let A ∈ U and a ∈ AE∞ �A be given. For all O ⊆ AE |a|+1 there
exists B ∈ [depthA(a), A]∩U such that r|a|+1[a,B] ⊆ O or r|a|+1[a,B]∩O =
∅.

Clearly, every ultrafilter over E∞ is a coideal over E∞, and is a filter over E∞ in
the sense of Halbeisen and Matet’s Definition 4.4.
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Lemma 6.2. If H ⊆ E∞ is a semiselective coideal then (H,≤∗) is σ-distributive.

Proof. Let {Dn}n∈N be a countable collection of dense open subsets of (H,≤∗).
Fix A ∈ H. For all a ∈ AE∞ �A, the set Da = {B ∈ H∩ [depthA(a), A] : B ∈ D|a|}
is dense open in H ∩ [depthA(a), A]. To show this, fix a ∈ AE∞ �A. Obviously, if
B ∈ Da and B′ ∈ H ∩ [depthA(a), A] is such that B′ ≤ B then B′ ∈ Da. Now,
given C ∈ H ∩ [depthA(a), A], choose Ba ∈ D|a| such that Ba ≤∗ C. Then there
exists b ∈ AE∞ �Ba such that [b, Ba] ⊆ [b, C]. We will assume that depthC(b) ≥
depthC(a) = depthA(a) (otherwise, let m = |b| + depthC(a), choose D ∈ [b, Ba]
and let b̂ = rm+1(D); then, [b̂, Ba] ⊆ [b̂, C] and depthC(b̂) ≥ depthC(a)). By
A.3 mod H, choose B ∈ H ∩ [depthC(b), C] such that ∅ 6= [b, B] ⊆ [b, Ba]. So
B ≤∗ Ba and therefore B ∈ D|a|. Notice also that since depthC(b) ≥ depthC(a) =
depthA(a), we have that B ∈ H ∩ [depthA(a), C] ⊆ H ∩ [depthA(a), A]. This
implies that B ≤ C and B ∈ Da, completing the proof that Da is dense open.
Let B ∈ H �A be a diagonalization of {Da}a∈AE∞�A. Then there exists a family
{Aa}a∈AE∞�A with Aa ∈ Da such that [a,B] ⊆ [a,Aa] for all a ∈ AE∞ �B. This
implies that B ≤∗ Aa for all a ∈ AE∞ �B. Therefore, B ∈ D|a| for all a ∈ AE∞ �B.
That is, B ∈

⋂
nDn, and the proof is complete. �

Lemma 6.3. Let H ⊆ E∞ be a semiselective coideal. Forcing with (H,≤∗) adds no
new elements of AEN∞ (in particular, no new elements of E∞ or H), and if U is the
(H,≤∗)-generic filter over some ground model V , then U is a selective ultrafilter
in V [U ].

Proof. Each element of E∞ can be coded by a subset of N, and also every sequence
in AEN∞ can be coded by a subset of N. Therefore, since (H,≤∗) is σ-distributive,
the fact that forcing with (H,≤∗) adds no new elements of AEN∞ follows by a
standard argument (see for instance [15, Theorem 15.6]). Let U be the (H,≤∗)-
generic filter over some ground model V . By genericity, U is a maximal filter. Also
by genericity, A.3 and A.4 (for the space E∞), we have that A.3 mod U and A.4
mod U hold (and therefore, U satisfies Definition 6.1). Also, since E∞ is closed,
given A ∈ U , the set of diagonalizations of any sequence A = (An)n∈N ⊆ U � A is
dense in (H,≤∗). Therefore, by genericity, U is selective. �

Corollary 6.4. Let U be the (H,≤∗)-generic filter over some ground model V .
Then U is Ramsey in V [U ].

Proof. It turns out that the generic ultrafilter U is a selective coideal. Then, by
Theorems 5.13 and 4.13, U is Ramsey. �

Lemma 6.5. Suppose H is not semiselective. Let U be a (H,≤∗)-generic filter
over some ground model V . Then U is not selective in V [U ].

Proof. Since H is not semiselective, there exist A ∈ H and a collection D =
{Da}a∈AE∞�A with Da dense open in H ∩ [depthA(a), A], for every a ∈ AE∞ �A,
and D has no diagonalization in H. In V [U ], each Da is dense in (H � A,≤∗).
Proceeding as in Lemma 4.12, find a decreasing sequence {An}n∈N ⊆ H �A such
that An ∈ U ∩ Da, for every a ∈ AE∞ � A with depthA(a) = n. Then {An}n∈N
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has no diagonalization in U and therefore U is not selective. This completes the
proof. �

The following theorem summarizes all the results of this section.

Theorem 6.6. Let H ⊆ E∞ be a coideal. The following are equivalent:
(1) H is semiselective.
(2) Forcing with (H,≤∗) adds no new elements of AEN∞ (in particular, no new

elements of E∞ or H), and if U is the (H,≤∗)-generic filter over some ground
model V , then U is a selective ultrafilter in V [U ].

6.2. Forcing with MH. Let H be a semiselective coideal. In this section we will
study the forcing notion for E∞ which is a dualization of Mathias forcing introduced
in [20]. The partial order is defined by:

MH = {(a,A) : A ∈ H, a ∈ AE∞ �A} ∪ {∅},
with (a,A) ≤ (b, B) if and only if [a,A] ⊆ [b, B]. We say that MH is the Mathias
forcing notion associated to H. As is customary in the forcing terminology, the
elements of MH are sometimes called conditions.

This forcing notion is the dual Mathias forcing but with conditions that have
their second coordinate in the family H. We will prove that if H is a semiselective
coideal, this forcing has properties similar to those of the dual Mathias forcing
presented in [11] and [13].

A partition X ∈ E∞ is MH-generic over a model V if for every dense open
subset D of MH, such that D ∈ V , there exists a condition (a,A) ∈ D such that
X ∈ [a,A].

The coideal H has the pure decision property (or the Prikry property) if for
every sentence of the forcing language φ and every condition (a,A) ∈ MH there
exists B ∈ [a,A] ∩H such that (a,B) decides φ. The coideal H has the hereditary
genericity property (or the Mathias property) if it satisfies that if X is MH-generic
over a model V , then every Y ≤ X is MH-generic over V .

Theorem 6.7. If H ⊆ E∞ is a semiselective coideal then it has the pure decision
property.

Proof. Suppose that H is semiselective and fix a sentence φ of the forcing language,
and a condition (a,A) ∈ MH. For every b ∈ AE∞ �A with a v b, let Db = {B ∈
H∩[depthA(b), A] : (b, B) decides φ or (∀C ∈ H ∩ [b, B]) (b, C) does not decide φ},
and for a 6v b, set Db = H ∩ [depthA(b), A], for all b ∈ AE∞ �A.

Each Db is dense open in H ∩ [depthA(b), A]. Fix a diagonalization B ∈ H �A.
Let

F0 = {b ∈ AE∞ �B : a v b & (b, B) forces φ},
F1 = {b ∈ AE∞ �B : a v b & (b, B) forces ¬φ}.

Let Ĉ ∈ H �B as in Lemma 5.4 applied to B and F0, and let C ∈ H � Ĉ be as in
Lemma 5.4 applied to Ĉ and F1. Let us prove that (a,C) decides φ. Let (b0, C0)
and (b1, C1) be two different extensions of (a,C); suppose that (b0, C0) forces φ
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and (b1, C1) forces ¬φ. Then b0 ∈ F0 and b1 ∈ F1. But b0, b1 ∈ AE∞ �C, so by the
choice of C this means that every element of H ∩ [a,C] has an initial segment in
F0 and an initial segment in F1. So there exist two compatible extensions of (a,C)
such that one forces φ and the other forces ¬φ — a contradiction. Thus either
both (b0, C0) and (b1, C1) force φ or both (b0, C0) and (b1, C1) force ¬φ. Therefore
(a,C) decides φ. �

When H is the whole space E∞, this is the pure decision property of the dual-
Mathias forcing ([13, Theorem 28.2]).

Now, we will prove that if H ⊆ E∞ is semiselective then it has the hereditary
genericity property (Theorem 6.13 below). Given a selective ultrafilter U ⊂ E∞,
let MU be the set of all pairs (a,A) such that A ∈ U and [a,A] 6= ∅. Order MU
with the same ordering used for MH.

For the rest of this section we essentially follow [21], where the case in which H
is the whole topological Ramsey space is treated. We include the proofs here for
completeness.

Definition 6.8. Let U ⊆ E∞ be a selective ultrafilter, D a dense open subset of
MU , and a ∈ AE∞. We say that A captures (a,D) if A ∈ U , [a,A] 6= ∅, and for all
B ∈ [a,A] there exists m > |a| such that (rm(B), A) ∈ D.

Lemma 6.9. Let U ⊆ E∞ be a selective ultrafilter and D a dense open subset of
MU . Then, for every a ∈ AE∞ there exists A which captures (a,D).

Proof. Given a ∈ AE∞, choose B ∈ U such that [a,B] 6= ∅. We can define a
collection {Cb}b∈AE∞�B with [b, Cb] 6= ∅ such that:

(1) For all b1, b2 ∈ AE∞ �B, if depthB(b1) = depthB(b2) then Cb1 = Cb2 .
(2) For all b1, b2 ∈ AE∞ �B, if b1 v b2 then Cb1 ≥ Cb2 .
(3) For all b ∈ AE∞ �B with a v b, either (b, Cb) ∈ D or if such a Cb ∈ D does

not exist then Cb = B.
For every b ∈ AE∞ �B, let Cn = Cb if depthB(b) = n. Notice that Cn ≥ Cn+1,

for all every n ∈ N. Let C ∈ U ∩ [a,B] be a diagonalization of {Cn}n∈N. Then, for
all b ∈ AE∞ �C with a v b, if there exists a Ĉ ∈ U such that (b, Ĉ) ∈ D, we must
have (b, C) ∈ D.

Let X = {D ∈ E∞ : D ≤ C → (∃b ∈ AE∞ �D) a @ b & (b, C) ∈ D}. X is
a metric open subset of E∞ and therefore, by Theorem 5.5, it is U-Ramsey. Take
Ĉ ∈ U ∩ [depthC(a), C] such that [a, Ĉ] ⊆ X or [a, Ĉ] ∩ X = ∅. We will show
that the first alternative holds: Pick A ∈ U ∩ [a, Ĉ] and (a′, A′) ∈ D such that
(a′, A′) ≤ (a,A). Notice that a v a′ and therefore, by (3), we have (a′, C) ∈ D.
By the definition of X , we also have A′ ∈ X . Now choose A′′ ∈ U ∩ [a′, A′]. Then
(a′, A′′) is also in D and therefore A′′ ∈ X . But A′′ ∈ [a′, A′] ⊆ [a,A] ⊆ [a, Ĉ]. This
implies that [a, Ĉ] ⊆ X . Finally, that A captures (a,D) follows from the definition
of X and the fact that [a,A] ⊆ [a, Ĉ] ⊆ [a,C]. This completes the proof. �
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Theorem 6.10. Let U ⊆ E∞ be a selective ultrafilter in a given transitive model V
of ZF +DCR. Forcing over V with MU adds a generic g ∈ E∞ with the property
that g ≤∗ A for all A ∈ U . In fact, B ∈ E∞ is MU -generic over V if and only if
B ≤∗ A for all A ∈ U .

Proof. Suppose that B ∈ E∞ is MU -generic over V . Fix an arbitrary A ∈ U . The
set {(c, C) ∈ MU : C ≤∗ A} is dense open and is in V . Fix (a,A′) ∈ MU . Choose
C0 ∈ U such that C0 ≤ A,A′. Since U is an ultrafilter, we can choose C1 ∈ U and
n ∈ N such that [n,C1] ⊆ [a,A′] ∩ [1, C0]. Let c = rn(C1). By A.3 mod U , there
exists C2 ∈ U ∩ [depthA′(c), A′] such that ∅ 6= [c, C2] ⊆ [c, C1]. It is clear that
[c, C2] ⊆ [c, A] and therefore C2 ≤∗ A. Also, since depthA′(c) ≥ depthA′(a), we
have [a,C2] 6= ∅. Thus, (a,C2) ≤ (a,A′). That is, D is dense. It is obviously open.
So, by genericity, there exists one (c, C) ∈ D such that B ∈ [c, C]. Hence B ≤∗ A.

Now, suppose that B ∈ E∞ is such that B ≤∗ A for all A ∈ U , and let D be
a dense open subset of MU . We need to find (a,A) ∈ D such that B ∈ [a,A].
In V , by using Lemma 6.9 iteratively, we can define a sequence {An}n∈N such that
An ∈ U , An+1 ≤ An and An captures (rn(B),D). Since U is a selective ultrafilter
in V , we can choose A ∈ U , in V , such that A ≤∗ An for all n. By our assumption
on B, we have B ≤∗ A. So there exists an a ∈ AE∞ such that [a,B] ⊆ [a,A]. Let
m = depthB(a). By A.3 mod U , we can assume that a = rm(B) = rm(A), and also
that A ∈ [rm(B), Am]. Therefore, B ∈ [m,A] and A captures (rm(B),D). Hence,
the following is true in V :

(∀C ∈ [m,A]) (∃n > m) ((rn(C), A) ∈ D). (6.1)

Let F = {b : (∃n > m) (b ∈ rn[m,A] & (b, A) /∈ D)} and give F the strict
end-extension ordering @. Then the relation (F ,@) is in V , and by equation (6.1)
(F ,@) is well-founded. Therefore, by a well-known argument due to Mostowski,
equation (6.1) holds in the universe. Hence, since B ∈ [m,A], there exists n > m
such that (rn(B), A) ∈ D. But B ∈ [rn(B), A], so B is MU -generic over V . �

Corollary 6.11. If B is MU -generic over some model V and A ≤ B then A is
also MU -generic over V .

Lemma 6.12. Let H ⊆ E∞ be a semiselective coideal. Consider the forcing notion
P = (H,≤∗) and let Û be a P-name for a P-generic ultrafilter. Then the iteration
P ∗MÛ is equivalent to the forcing MH.

Proof. Recall that P∗MÛ = {(B, (ȧ, Ȧ)) : B ∈ H & B ` (ȧ, Ȧ) ∈MÛ}, with the or-
dering (B, (ȧ, Ȧ)) ≤ (B0, (ȧ0, Ȧ0))⇔ B ≤∗ B0 & (ȧ, Ȧ) ≤ (B0, (ȧ0, Ȧ0)). The map-
ping (a,A) 7→ (A, (â, Â)) is a dense embedding from MH to P∗MÛ (here â and Â are
the canonical P-names for a and A, respectively). It is easy to show that this map-
ping preserves the order. So, given (B, (ȧ, Ȧ)) ∈ P ∗MÛ , we need to find (d,D) ∈
MH such that (D, (d̂, D̂)) ≤ (B, (ȧ, Ȧ)). Since P is σ-distributive, there exist a ∈
AE∞, A ∈ H and C ≤ ∗B in H such that C P (â = ȧ & Â = Ȧ) (so we can assume
that a ∈ AE∞ �C). Notice that (C, (â, Â)) ∈ P ∗MÛ and (C, (â, Â)) ≤ (B, (ȧ, Ȧ)).
So, C P Ĉ ∈ Û and C P Â ∈ Û . Then, C P (∃x ∈ Û) (x ∈ [â, Â] & x ∈ [â, Ĉ]).
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So there existsD ∈ H such thatD ∈ [a,A]∩[a,C]. Hence, (D, (â, D̂)) ≤ (B, (ȧ, Ȧ)).
This completes the proof. �

The next theorem follows immediately from Corollary 6.11 and Lemma 6.12.

Theorem 6.13. Every semiselective coideal H ⊆ E∞ has the hereditary genericity
property.

The forcing notion MH is the dualization of Mathias forcing to the space E∞.
In [20] Mathias used this forcing to prove that all definable collections of infinite
subsets of N are H-Ramsey in Solovay’s model, obtained by the collapse of a Mahlo
cardinal to ℵ1, where H is a selective coideal on N which belongs to that model.
For this, the properties of pure decision and hereditary genericity are important.
Similar results can be proved for the space E∞, but this is out of the scope of this
article.
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