Higher Fano Manifolds

Authors

  • Carolina Araujo IMPA, Estrada Dona Castorina 110, 22460-320 Rio de Janeiro, Brazil
  • Roya Beheshti Department of Mathematics & Statistics, Washington University in St. Louis, St. Louis, MO 63130, USA
  • Ana-Maria Castravet Universit´e Paris-Saclay, UVSQ, Laboratoire de Math´ematiques de Versailles, 78000, Versailles, France
  • Kelly Jabbusch Department of Mathematics & Statistics, University of Michigan–Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, USA
  • Svetlana Makarova Department of Mathematics, University of Pennsylvania, 209 S 33rd St, Philadelphia, PA 19104, USA
  • Enrica Mazzon Max-Planck-Institut f¨ur Mathematik, Vivatsgasse 7, 53111, Bonn, Germany
  • Libby Taylor Stanford University, 380 Serra Mall, Stanford, CA 94305, USA
  • Nivedita Viswanathan School of Mathematics, The University of Edinburgh, Edinburgh, EH9 3FD, UK

DOI:

https://doi.org/10.33044/revuma.2921

Abstract

We address in this paper Fano manifolds with positive higher Chern characters, which are expected to enjoy stronger versions of several of the nice properties of Fano manifolds. For instance, they should be covered by higher dimensional rational varieties, and families of higher Fano manifolds over higher dimensional bases should admit meromorphic sections (modulo the Brauer obstruction). Aiming at finding new examples of higher Fano manifolds, we investigate positivity of higher Chern characters of rational homogeneous spaces. We determine which rational homogeneous spaces of Picard rank 1 have positive second Chern character, and show that the only rational homogeneous spaces of Picard rank 1 having positive second and third Chern characters are projective spaces and quadric hypersurfaces. We also classify Fano manifolds of large index having positive second and third Chern characters. We conclude by discussing conjectural characterizations of projective spaces and complete intersections in terms of these higher Fano conditions.

Downloads

Download data is not yet available.

References

D. N. Akhiezer, Lie Group Actions in Complex Analysis, Aspects of Mathematics, E27, Friedr. Vieweg & Sohn, Braunschweig, 1995. MR 1334091.

C. Araujo and A.-M. Castravet, Polarized minimal families of rational curves and higher Fano manifolds, Amer. J. Math. 134 (2012), no. 1, 87–107. MR 2876140.

C. Araujo and A.-M. Castravet, Classification of 2-Fano manifolds with high index, in A Celebration of Algebraic Geometry, 1–36, Clay Math. Proc., 18, Amer. Math. Soc., Providence, RI, 2013. MR 3114934.

I. N. Bernšteĭn, I. M. Gelʹfand and S. I. Gelʹfand, Schubert cells, and the cohomology of the spaces $G/P$, Uspehi Mat. Nauk 28 (1973), no. 3(171), 3–26. MR 0429933.

N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: Systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968. MR 0240238.

F. Campana, Connexité rationnelle des variétés de Fano, Ann. Sci. École Norm. Sup. (4) 25 (1992), no. 5, 539–545. MR 1191735.

P. E. Chaput, L. Manivel and N. Perrin, Quantum cohomology of minuscule homogeneous spaces, Transform. Groups 13 (2008), no. 1, 47–89. MR 2421317.

I. Coskun, Restriction varieties and geometric branching rules, Adv. Math. 228 (2011), no. 4, 2441–2502. MR 2836127.

I. Coskun, Symplectic restriction varieties and geometric branching rules, in A Celebration of Algebraic Geometry, 205–239, Clay Math. Proc., 18, Amer. Math. Soc., Providence, RI, 2013. MR 3114942.

A. J. de Jong, X. He and J. M. Starr, Families of rationally simply connected varieties over surfaces and torsors for semisimple groups, Publ. Math. Inst. Hautes Études Sci. No. 114 (2011), 1–85. MR 2854858.

A. J. de Jong and J. M. Starr, A note on Fano manifolds whose second Chern character is positive, https://arxiv.org/abs/math/0602644v1 [math.AG], 2006.

A. J. de Jong and J. M. Starr, Low degree complete intersections are rationally simply connected, https://www.math.stonybrook.edu/ jstarr/papers/nk1006g.pdf, 2006.

A. J. de Jong and J. Starr, Higher Fano manifolds and rational surfaces, Duke Math. J. 139 (2007), no. 1, 173–183. MR 2322679.

A. Fanelli, L. Gruson and N. Perrin, Rational curves on $V_5$ and rational simple connectedness, https://arxiv.org/abs/1901.06930 [math.AG], 2019.

W. Fulton, Young Tableaux, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997. MR 1464693.

W. Fulton and J. Harris, Representation Theory, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991. MR 1153249.

T. Graber, J. Harris and J. Starr, Families of rationally connected varieties, J. Amer. Math. Soc. 16 (2003), no. 1, 57–67. MR 1937199.

J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York, 1972. MR 0323842.

J. E. Humphreys, Linear Algebraic Groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York, 1975. MR 0396773.

J.-M. Hwang, Geometry of minimal rational curves on Fano manifolds, in School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000), 335–393, ICTP Lect. Notes, 6, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2001. MR 1919462.

J.-M. Hwang and N. Mok, Birationality of the tangent map for minimal rational curves, Asian J. Math. 8 (2004), no. 1, 51–63. MR 2128297.

A. Iliev and L. Manivel, The Chow ring of the Cayley plane, Compos. Math. 141 (2005), no. 1, 146–160. MR 2099773.

S. Kebekus, Families of singular rational curves, J. Algebraic Geom. 11 (2002), no. 2, 245–256. MR 1874114.

J. Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 32, Springer-Verlag, Berlin, 1996. MR 1440180.

J. Kollár, Y. Miyaoka and S. Mori, Rational connectedness and boundedness of Fano manifolds, J. Differential Geom. 36 (1992), no. 3, 765–779. MR 1189503.

D. Kotschick and D. K. Thung, The complex geometry of two exceptional flag manifolds, Ann. Mat. Pura Appl. (4) 199 (2020), no. 6, 2227–2241. MR 4165679.

J. M. Landsberg and L. Manivel, On the projective geometry of rational homogeneous varieties, Comment. Math. Helv. 78 (2003), no. 1, 65–100. MR 1966752.

J. M. Landsberg and L. Manivel, Representation theory and projective geometry, in Algebraic transformation groups and algebraic varieties, 71–122, Encyclopaedia Math. Sci., 132, Invariant Theory Algebr. Transform. Groups, III, Springer, Berlin, 2004. MR 2090671.

S. Lang, On quasi algebraic closure, Ann. of Math. (2) 55 (1952), 373–390. MR 0046388.

L. Manivel, Topics on the geometry of rational homogeneous spaces, Acta Math. Sin. (Engl. Ser.) 36 (2020), no. 8, 851–872. MR 4129512.

J. S. Milne, Lie Algebras, Algebraic Groups, and Lie Groups, 2013. Available at https://www.jmilne.org/math/CourseNotes/LAG.pdf.

S. Mori, Projective manifolds with ample tangent bundles, Ann. of Math. (2) 110 (1979), no. 3, 593–606. MR 0554387.

T. Nagaoka, On a sufficient condition for a Fano manifold to be covered by rational $N$-folds, J. Pure Appl. Algebra 223 (2019), no. 11, 4677–4688. MR 3955036.

J. Nagel, Cohomology of quadric bundles, Habilitation thesis, Université Lille 1, 2006. Available at http://nagel49.perso.math.cnrs.fr/habilitation.pdf.

B. Pasquier, Introduction to Spherical Varieties and Description of Special Classes of Spherical Varieties, 2009. Available at http://www-math.sp2mi.univ-poitiers.fr/ bpasquie/KIAS.pdf.

P. Pragacz, A generalization of the Macdonald–You formula, J. Algebra 204 (1998), no. 2, 573–587. MR 1624487.

P. Pragacz, Addendum: “A generalization of the Macdonald–You formula”, J. Algebra 226 (2000), no. 1, 639–648. MR 1749909.

D. Snow, Homogeneous Vector Bundles. Available at https://www3.nd.edu/ snow/Papers/HomogVB.pdf.

T. A. Springer, Linear Algebraic Groups, second edition, Progress in Mathematics, 9, Birkhäuser Boston, 1998. MR 1642713.

J. M. Starr, Hypersurfaces of low degree are rationally simply-connected, https://arxiv.org/abs/math/0602641 [math.AG], 2006.

J. M. Starr, Brauer Groups and Galois Cohomology of Function Fields of Varieties, Publicações Matemáticas do IMPA, Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2008. MR 2440271.

T. Suzuki, Higher order minimal families of rational curves and Fano manifolds with nef Chern characters, J. Math. Soc. Japan 73 (2021), no. 3, 949–964. MR 4291439.

Downloads

Published

2022-05-10