Complete presentation and Hilbert series of the mixed braid monoid $MB_{1,3}$

Authors

  • Zaffar Iqbal Department of Mathematics, University of Gujrat, Pakistan
  • Muhammad Mobeen Munir Department of Mathematics, University of Gujrat, Pakistan
  • Abdul Rauf Nizami Faculty of Information Technology, University of Central Punjab, Lahore, Pakistan

DOI:

https://doi.org/10.33044/revuma.3479

Abstract

The Hilbert series is the simplest way of finding dimension and degree of an algebraic variety defined explicitly by polynomial equations. The mixed braid groups were introduced by Sofia Lambropoulou in 2000. In this paper we compute the complete presentation and the Hilbert series of the canonical words of the mixed braid monoid $MB_{1,3}$.

Downloads

Download data is not yet available.

References

U. Ali and Z. Iqbal, Hilbert series of Artin monoid $M(I_2(p))$, Southeast Asian Bull. Math. 37 no. 4 (2013), 475–480.  MR  Zbl

U. Ali, Z. Iqbal, and S. Nazir, Canonical forms and infimum of positive braids, Algebra Colloq. 18 no. Special Issue 1 (2011), 1007–1016.  DOI  MR  Zbl

E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg 4 no. 1 (1925), 47–72.  DOI  MR  Zbl

G. M. Bergman, The diamond lemma for ring theory, Adv. in Math. 29 no. 2 (1978), 178–218.  DOI  MR  Zbl

P. de la Harpe, Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2000.  MR  Zbl

Z. Iqbal, Combinatorial problems in braid groups, Ph.D. thesis, Abdus Salam School of Mathematical Sciences, Government College University Lahore, Pakistan, 2004.

Z. Iqbal, Hilbert series of positive braids, Algebra Colloq. 18 no. Special Issue 1 (2011), 1017–1028.  DOI  MR  Zbl

Z. Iqbal, Hilbert series of the finite dimensional generalized Hecke algebras, Turkish J. Math. 39 no. 5 (2015), 698–705.  DOI  MR  Zbl

Z. Iqbal and S. Yousaf, Hilbert series of the braid monoid $MB_4$ in band generators, Turkish J. Math. 38 no. 6 (2014), 977–984.  DOI  MR  Zbl

A. Kumar and R. Sarkar, Hilbert series of binomial edge ideals, Comm. Algebra 47 no. 9 (2019), 3830–3841.  DOI  MR  Zbl

S. Lambropoulou, Solid torus links and Hecke algebras of ℬ-type, in Proceedings of the Conference on Quantum Topology (Manhattan, KS, 1993), World Scientific, River Edge, NJ, 1994, pp. 225–245.  MR  Zbl

S. Lambropoulou, Braid structures in knot complements, handlebodies and 3-manifolds, in Knots in Hellas '98 (Delphi), Ser. Knots Everything 24, World Scientific, River Edge, NJ, 2000, pp. 274–289.  DOI  MR  Zbl

J. Mairesse and F. Mathéus, Growth series for Artin groups of dihedral type, Internat. J. Algebra Comput. 16 no. 6 (2006), 1087–1107.  DOI  MR  Zbl

K. Saito, Growth functions for Artin monoids, Proc. Japan Acad. Ser. A Math. Sci. 85 no. 7 (2009), 84–88.  DOI  MR  Zbl

Downloads

Published

2024-09-25

Issue

Section

Article