Boundedness of geometric invariants near a singularity which is a suspension of a singular curve

Authors

  • Luciana F. Martins Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, R. Cristóvão Colombo, 2265, Jd Nazareth, 15054-000, São Josê do Rio Preto, São Paulo, Brazil
  • Kentaro Saji Department of Mathematics, Graduate School of Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501, Japan
  • Samuel P. dos Santos Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, R. Cristóvão Colombo, 2265, Jd Nazareth, 15054-000, São Josê do Rio Preto, São Paulo, Brazil
  • Keisuke Teramoto Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512, Japan

DOI:

https://doi.org/10.33044/revuma.3492

Abstract

Near a singular point of a surface or a curve, geometric invariants diverge in general, and the orders of this divergence, in particular the boundedness about these invariants, represent the geometry of the surface and the curve. In this paper, we study the boundedness and orders of several geometric invariants near a singular point of a surface which is a suspension of a singular curve in the plane, and those of the curves passing through the singular point. We evaluate the orders of the Gaussian and mean curvatures, as well as those of the geodesic and normal curvatures, and the geodesic torsion for the curve.

Downloads

Download data is not yet available.

Author Biography

Luciana F. Martins, Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, R. Cristóvão Colombo, 2265, Jd Nazareth, 15054-000, São Josê do Rio Preto, São Paulo, Brazil

Departamento de Matematica, Ibilce,
Universidade Estadual Paulista

References

M. P. do Carmo, Differential geometry of curves and surfaces, Prentice-Hall, Englewood Cliffs, NJ, 1976.  MR  Zbl

W. Domitrz and M. Zwierzyński, The Gauss-Bonnet theorem for coherent tangent bundles over surfaces with boundary and its applications, J. Geom. Anal. 30 no. 3 (2020), 3243–3274.  DOI  MR  Zbl

S. Fujimori, K. Saji, M. Umehara, and K. Yamada, Singularities of maximal surfaces, Math. Z. 259 no. 4 (2008), 827–848.  DOI  MR  Zbl

T. Fukui, Local differential geometry of singular curves with finite multiplicities, Saitama Math. J. 31 (2017), 79–88.  MR  Zbl

T. Fukunaga and M. Takahashi, Framed surfaces in the Euclidean space, Bull. Braz. Math. Soc. (N.S.) 50 no. 1 (2019), 37–65.  DOI  MR  Zbl

M. Hasegawa, A. Honda, K. Naokawa, K. Saji, M. Umehara, and K. Yamada, Intrinsic properties of surfaces with singularities, Internat. J. Math. 26 no. 4 (2015), 1540008, 34 pp.  DOI  MR  Zbl

A. Honda and H. Sato, Singularities of spacelike mean curvature one surfaces in de Sitter space, 2021. arXiv:2103.13849 [math.DG].

A. Honda and K. Saji, Geometric invariants of 5/2-cuspidal edges, Kodai Math. J. 42 no. 3 (2019), 496–525.  DOI  MR  Zbl

S. Izumiya, M. C. Romero Fuster, M. A. S. Ruas, and F. Tari, Differential geometry from a singularity theory viewpoint, World Scientific, Hackensack, NJ, 2016.  DOI  MR  Zbl

L. F. Martins and K. Saji, Geometric invariants of cuspidal edges, Canad. J. Math. 68 no. 2 (2016), 445–462.  DOI  MR  Zbl

L. F. Martins, K. Saji, S. P. D. Santos, and K. Teramoto, Singular surfaces of revolution with prescribed unbounded mean curvature, An. Acad. Brasil. Ciênc. 91 no. 3 (2019), e20170865, 10 pp.  DOI  MR  Zbl

L. F. Martins, K. Saji, M. Umehara, and K. Yamada, Behavior of Gaussian curvature and mean curvature near non-degenerate singular points on wave fronts, in Geometry and topology of manifolds, Springer Proc. Math. Stat. 154, Springer, [Tokyo], 2016, pp. 247–281.  DOI  MR  Zbl

K. Saji, M. Umehara, and K. Yamada, The geometry of fronts, Ann. of Math. (2) 169 no. 2 (2009), 491–529.  DOI  MR  Zbl

S. Shiba and M. Umehara, The behavior of curvature functions at cusps and inflection points, Differential Geom. Appl. 30 no. 3 (2012), 285–299.  DOI  MR  Zbl

M. Takahashi and K. Teramoto, Surfaces of revolution of frontals in the Euclidean space, Bull. Braz. Math. Soc. (N.S.) 51 no. 4 (2020), 887–914.  DOI  MR  Zbl

Downloads

Published

2024-09-23

Issue

Section

Article