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ON THE ENESTRÖM–KAKEYA THEOREM AND ITS VARIOUS
FORMS IN THE QUATERNIONIC SETTING

ABDULLAH MIR

Abstract. We study the extensions of the classical Eneström–Kakeya the-
orem and its various generalizations regarding the distribution of zeros of
polynomials from the complex to the quaternionic setting. We aim to build
upon the previous work by various authors and derive zero-free regions of
some special regular functions of a quaternionic variable with restricted coeffi-
cients, namely quaternionic coefficients whose real and imaginary components
or moduli of the coefficients satisfy suitable inequalities. The obtained results
for this subclass of polynomials and slice regular functions produce general-
izations of a number of results known in the literature on this subject.

1. Introduction and preliminaries

The study of the distribution of zeros of polynomials and related analytic func-
tions in geometric function theory is a problem of interest both in mathematics
and in application areas such as physical systems. In addition to having numerous
applications, this study has been the inspiration for much further research from
both theoretical and practical perspectives. Since the zeros of a polynomial are
continuous functions of its coefficients, in general it is quite complicated to derive
bounds on the norm of zeros of a general algebraic polynomial. Therefore, in order
to attain better and sharp zero bounds, it is desirable to put some restrictions on
the coefficients of the polynomial. In this connection, we state the following elegant
result concerning the distribution of zeros of a polynomial when its coefficients are
restricted, known in the literature as the Eneström–Kakeya theorem [12].

Theorem 1.1 (Eneström–Kakeya theorem). If T (z) =
n∑
v=0

avz
v is a polynomial

of degree n (where z is a complex variable) with real coefficients and satisfying

an ≥ an−1 ≥ . . . ≥ a1 ≥ a0 > 0,

then all the zeros of T (z) lie in |z| ≤ 1.
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198 ABDULLAH MIR

The above classical result is particularly important in the study of stability of
numerical methods for differential equations and is the starting point of a rich
literature concerning its extensions, generalizations and improvements in several
directions; see, e.g. the papers [1], [3], [10], to mention only a few. For an exhaustive
survey of its extensions and refinements, we refer the reader to the comprehensive
books of Marden [12], Milovanović et al. [13] and Gardner and Taylor [5]. We
get the following equivalent form of Theorem 1.1 by applying it to the polynomial
znT

( 1
z

)
.

Theorem 1.2. If T (z) =
n∑
v=0

avz
v is a polynomial of degree n (where z is a complex

variable) with real coefficients and satisfying
a0 ≥ a1 ≥ . . . ≥ an−1 ≥ an > 0,

then T (z) does not vanish in |z| < 1.
From the above results on polynomials, analogues specifying a zero-free disk

of a power series analytic in a given region can be deduced. The extension of
Theorem 1.2 to a class of related analytic functions was established by Aziz and
Mohammad [1] in the form of the following result.

Theorem 1.3. Let f(z) =
∞∑
v=0

avz
v 6≡ 0 be analytic in |z| ≤ t, t > 0. If

av > 0 and av−1 − tav ≥ 0, v = 1, 2, 3, . . . ,
then f(z) does not vanish in |z| < t.

The goal of this paper is to extend the above results and their various generaliza-
tions in the quaternionic setting. We begin with some preliminaries on quaternions
and regular functions of a quaternionic variable which will be useful in what follows.
Quaternions are essentially a generalization of complex numbers to four dimensions
(one real and three imaginary parts) and were first studied and developed by Sir
William Rowan Hamilton in 1843. The number system of quaternions is denoted
by H in his honor. This theory of quaternions is by now very well developed in
many different directions, and we refer the reader to [17] for the basic features of
quaternionic functions. The set of quaternions is a noncommutative division ring.
It consists of elements of the form q = α + βi + γj + δk, α, β, γ, δ ∈ R, where the
imaginary units i, j, k satisfy i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i,
ki = −ik = j. Every element q = α + βi + γj + δk ∈ H is composed of the real
part Re(q) = α and the imaginary part Im(q) = βi + γj + δk. The conjugate
of q is denoted by q and is defined as q = α − βi − γj − δk, and the norm of q is
|q| =

√
qq =

√
α2 + β2 + γ2 + δ2. The inverse of each nonzero element q of H is

given by q−1 = |q|−2q. For r > 0, we define the ball B(0, r) = {q ∈ H : |q| < r}.
By B we denote the open unit ball in H centered at the origin, i.e.,

B = {q = α+ βi+ γj + δk : α2 + β2 + γ2 + δ2 < 1},
and by S the unit sphere of purely imaginary quaternions, i.e.,

S = {q = βi+ γj + δk : β2 + γ2 + δ2 = 1}.
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The functions we consider in this paper are slice regular functions as polynomials
of the form

T (q) =
n∑
v=0

qvav

and power series of the form

f(q) =
∞∑
v=0

qvav

of the quaternionic variable q on the left and with quaternionic coefficients av on
the right.

Two quaternionic polynomials of this kind can be multiplied according to the
convolution product (Cauchy multiplication rule): given T1(q) =

n∑
i=0

qiai and

T2(q) =
m∑
j=0

qjbj , we define

(T1 ∗ T2)(q) :=
∑

i=0,1,...,n
j=0,1,...,m

qi+jaibj .

If T1 has real coefficients, the so-called ∗ multiplication coincides with the usual
pointwise multiplication. Notice that the ∗ product is associative and not, in
general, commutative. Given two quaternionic power series f(q) =

∞∑
v=0

qvav and

g(q) =
∞∑
v=0

qvbv with radii of convergence greater than R, we define the regular

product of f and g as the series

(f ∗ g)(q) =
∞∑
v=0

qvcv,

where cv =
v∑
k=0

akbv−k for all v. Further, as observed in [4], [7], for each quater-

nionic power series f(q) =
∞∑
v=0

qvav there exists a ball B(0, R) = {q ∈ H : |q| < R}

such that f converges absolutely and uniformly on each compact subset of B(0, R)
and where the sum function of f is regular.

The regular functions of a quaternionic variable have been introduced and inten-
sively studied in the past decade; they have proven to be a fertile topic in analysis,
and their rapid development has been largely driven by the applications to operator
theory. In the preliminary steps, the structure of the zero sets of a quaternionic reg-
ular function and the factorization property of zeros was described. In this regard,
Gentili and Stoppato [7] (see also [9]) gave a necessary and sufficient condition for
a regular quaternionic power series to have a zero at a point in the form of the
following result.
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Theorem 1.4. Let f(q) =
∞∑
v=0

qvav be a quaternionic power series with radius of

convergence R, and let p ∈ B(0, R). Then f(p) = 0 if and only if there exists a
quaternionic power series g(q) with radius of convergence R such that

f(q) = (q − p) ∗ g(q).

This extends to quaternionic power series the theory presented in [11] for poly-
nomials. The following result, which completely describes the zero sets of a regular
product of two polynomials in terms of the zero sets of the two factors, is from [11]
(see also [9] and [7]).

Theorem 1.5. Let f and g be quaternionic polynomials. Then (f ∗ g)(q0) = 0 if
and only if f(q0) = 0 or f(q0) 6= 0 implies g

(
f(q0)−1q0f(q0)

)
= 0.

Gentili and Struppa [8] introduced a maximum modulus theorem for regular
functions, which includes convergent power series and polynomials, in the form of
the following result.

Theorem 1.6 (Maximum modulus theorem). Let B = B(0, r) be a ball in H with
center 0 and radius r > 0, and let f : B → H be a regular function. If |f | has a
relative maximum at a point a ∈ B, then f is a constant on B.

In [9], [8], [7] the structure of the zeros of polynomials was used and a topolog-
ical proof of the fundamental theorem of algebra was established. We point out
that the fundamental theorem of algebra for regular polynomials with coefficients
in H was already proved by Niven (for reference, see [14], [15]) by using different
techniques. This lead to the complete identification of the zeros of polynomials in
terms of their factorization; for reference, see [16]. Thus it became an interesting
perspective to think about the regions containing some or all the zeros of a regular
polynomial of a quaternionic variable. Very recently, Carney et al. [2] extended the
Eneström–Kakeya theorem and its various generalizations from complex polyno-
mials to quaternionic polynomials by making use of Theorems 1.5 and 1.6. Firstly,
they established the following quaternionic analogue of Theorem 1.1.

Theorem 1.7. If T (q) =
n∑
v=0

qvav is a polynomial of degree n (where q is a quater-

nionic variable) with real coefficients and satisfying

an ≥ an−1 ≥ . . . ≥ a1 ≥ a0 ≥ 0,

then all the zeros of T (q) lie in |q| ≤ 1.

In this form, the above theorem has been extensively studied and extended in
various ways, even to quaternionic coefficients with restricted real and imaginary
components. In the same paper, Carney et al. [2] established the following gener-
alization of Theorem 1.7 to quaternionic coefficients.
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Theorem 1.8. If T (q) =
n∑
v=0

qvav is a polynomial of degree n (where q is a quater-

nionic variable) with quaternionic coefficients, where av = αv +βvi+ γvj+ δvk for
v = 0, 1, 2, . . . , n, satisfying

αn ≥ αn−1 ≥ . . . ≥ α1 ≥ α0,

βn ≥ βn−1 ≥ . . . ≥ β1 ≥ β0,

γn ≥ γn−1 ≥ . . . ≥ γ1 ≥ γ0,

δn ≥ δn−1 ≥ . . . ≥ δ1 ≥ δ0,

then all the zeros of T (q) lie in

|q| ≤ (|α0| − α0 + αn) + (|β0| − β0 + βn) + (|γ0| − γ0 + γn) + (|δ0| − δ0 + δn)
|an|

.

In the meantime, Tripathi ([18, Theorem 3.1]) established the following gener-
alization of Theorem 1.8.

Theorem 1.9. Let T (q) =
n∑
v=0

qvav be a polynomial of degree n (where q is a

quaternionic variable) with quaternionic coefficients, where av = αv+βvi+γvj+δvk
for v = 0, 1, 2, . . . , n, satisfying

αn ≥ αn−1 ≥ . . . ≥ αl,
βn ≥ βn−1 ≥ . . . ≥ βl,
γn ≥ γn−1 ≥ . . . ≥ γl,
δn ≥ δn−1 ≥ . . . ≥ δl

for 0 ≤ l ≤ n. Then all the zeros of T (q) lie in

|q| ≤ 1
|an|

[
|α0|+ |β0|+ |γ0|+ |δ0|+ (αn − αl) + (βn − βl)

+ (γn − γl) + (δn − δl) +Ml

]
,

where

Ml =
l∑

v=1

[
|αv − αv−1|+ |βv − βv−1|+ |γv − γv−1|+ |δv − δv−1|

]
.

Very recently, Gardner and Taylor [6] established the following more general
result giving a ring-shaped region containing all the zeros of a quaternionic poly-
nomial with restricted real and imaginary components. As a consequence, it gives
Theorem 1.8 and many related results as special cases.
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Theorem 1.10. Let T (q) =
n∑
v=0

qvav be a polynomial of degree n (where q is a

quaternionic variable) with quaternionic coefficients, where av = αv+βvi+γvj+δvk
for v = 0, 1, 2, . . . , n. If an 6= 0 and for some l,m, r, s and t > 0 the following
relations hold:

α0 ≤ tα1 ≤ t2α2 ≤ · · · ≤ tlαl ≥ tl+1αl+1 ≥ · · · ≥ tnαn
β0 ≤ tβ1 ≤ t2β2 ≤ · · · ≤ tmβm ≥ tm+1βm+1 ≥ · · · ≥ tnβn
γ0 ≤ tγ1 ≤ t2γ2 ≤ · · · ≤ trγr ≥ tr+1γr+1 ≥ · · · ≥ tnγn
δ0 ≤ tδ1 ≤ t2δ2 ≤ · · · ≤ tsδs ≥ ts+1δs+1 ≥ · · · ≥ tnδn,

then T (q) has all its zeros in R1 ≤ |q| ≤ R2, where
R1 = min

{
t |a0| /

(
2
(
tlαl + tmβm + trγr + tsδs

)
− (α0 + β0 + γ0 + δ0)

−tn (αn + βn + γn + δn − |an|)) , t}
and

R2 = max
{

1
|an|

(
|a0|tn+1 − tn−1(α0 + β0 + γ0 + δ0)− t(αn + βn + γn + δn)

+ (t2 + 1)(tn−l−1αl + tn−m−1βm + tn−r−1γr + tn−s−1δs)

+ (t2 − 1)
( l−1∑
j=1

tn−j−1αj +
m−1∑
j=1

tn−j−1βj +
r−1∑
j=1

tn−j−1γj +
s−1∑
j=1

tn−j−1δj

)

+ (1− t2)
( n−1∑
j=l+1

tn−j−1αj +
n−1∑

j=m+1
tn−j−1βj

+
n−1∑
j=r+1

tn−j−1γj +
n−1∑
j=s+1

tn−j−1δj

))
,

1
t

}
.

We get the following generalization of Theorem 1.8 as a consequence of Theo-
rem 1.10 for t = 1.

Theorem 1.11. If T (q) =
n∑
v=0

qvav is a quaternionic polynomial of degree n, where

av = αv + βvi+ γvj + δvk for v = 0, 1, 2, . . . , n, satisfying
αn ≤ αn−1 ≤ . . . ≤ αl ≥ αl−1 ≥ . . . ≥ α1 ≥ α0, 0 ≤ l ≤ n
βn ≤ βn−1 ≤ . . . ≤ βm ≥ βm−1 ≥ . . . ≥ β1 ≥ β0, 0 ≤ m ≤ n
γn ≤ γn−1 ≤ . . . ≤ γr ≥ γr−1 ≥ . . . ≥ γ1 ≥ γ0, 0 ≤ r ≤ n
δn ≤ δn−1 ≤ . . . ≤ δs ≥ δs−1 ≥ . . . ≥ δ1 ≥ δ0, 0 ≤ s ≤ n,

then all the zeros of T (q) lie in

|q| ≤ 1
|an|

[
(2αl − αn + |α0| − α0) + (2βm − βn + |β0| − β0)

+ (2γr − γn + |γ0| − γ0) + (2δs − δn + |δ0| − δ0)
]
.
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ENESTRÖM–KAKEYA’S THEOREM IN THE QUATERNIONIC SETTING 203

From Theorem 1.11, we obtain the following generalization of Theorem 1.7 for
polynomials with quaternionic coefficients.

Theorem 1.12. If T (q) =
n∑
v=0

qvav is a quaternionic polynomial of degree n, where

av = αv + βvi+ γvj + δvk for v = 0, 1, 2, . . . , n, satisfying
0 < αn ≤ αn−1 ≤ . . . ≤ αl ≥ αl−1 ≥ . . . ≥ α1 ≥ α0 ≥ 0
0 ≤ βn ≤ βn−1 ≤ . . . ≤ βm ≥ βm−1 ≥ . . . ≥ β1 ≥ β0 ≥ 0
0 ≤ γn ≤ γn−1 ≤ . . . ≤ γr ≥ γr−1 ≥ . . . ≥ γ1 ≥ γ0 ≥ 0
0 ≤ δn ≤ δn−1 ≤ . . . ≤ δs ≥ δs−1 ≥ . . . ≥ δ1 ≥ δ0 ≥ 0

for some nonnegative integers l,m, r and s, then all the zeros of T (q) lie in

|q| ≤ 1
|an|

[
2(αl + βm + γr + δs)− (αn + βn + γn + δn)

]
.

It is natural to study the geometric properties of quaternionic polynomials and
slice regular functions in general, as well as the regional location of their zeros. Slice
regular functions are now a widely studied topic, important especially in replicating
many properties of holomorphic functions of a complex variable. The main purpose
of this paper is to extend various results of Eneström–Kakeya type from the com-
plex to the quaternionic setting and to obtain zero-free regions of some special slice
regular functions of a quaternionic variable with restricted coefficients. We shall
make use of the recently established maximum modulus theorem (Theorem 1.6),
the structure of the zero sets of the regular product of two polynomials (Theo-
rem 1.5) and the factorization theorem (Theorem 1.4) to get the desired results.
The obtained results also produce generalizations and refinements of Theorems 1.3,
1.11, 1.12 and many other related results.

2. Main results

In this section, we state our main results. Their proofs are given in the next
section. We start with the following refinement of Theorem 1.11.

Theorem 2.1. If T (q) =
n∑
v=0

qvav is a quaternionic polynomial of degree n, where

av = αv + βvi+ γvj + δvk for v = 0, 1, 2, . . . , n, satisfying
αn ≤ αn−1 ≤ . . . ≤ αl ≥ αl−1 ≥ . . . ≥ α1 ≥ α0, 0 ≤ l ≤ n− 1
βn ≤ βn−1 ≤ . . . ≤ βm ≥ βm−1 ≥ . . . ≥ β1 ≥ β0, 0 ≤ m ≤ n− 1
γn ≤ γn−1 ≤ . . . ≤ γr ≥ γr−1 ≥ . . . ≥ γ1 ≥ γ0, 0 ≤ r ≤ n− 1
δn ≤ δn−1 ≤ . . . ≤ δs ≥ δs−1 ≥ . . . ≥ δ1 ≥ δ0, 0 ≤ s ≤ n− 1,

then all the zeros of T (q) lie in∣∣∣∣q + an−1

an
− 1
∣∣∣∣ ≤ 1
|an|

[
(2αl − αn−1 + |α0| − α0) + (2βm − βn−1 + |β0| − β0)

+ (2γr − γn−1 + |γ0| − γ0) + (2δs − δn−1 + |δ0| − δ0)
]
.
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To show that Theorem 2.1 is an improvement of Theorem 1.11, we show that the
region defined by Theorem 2.1 is contained in the region defined by Theorem 1.1.

Let q be any point belonging to the region defined by Theorem 2.1; then∣∣∣∣q + an−1

an
− 1
∣∣∣∣ ≤ 1
|an|

[
(2αl − αn−1 + |α0| − α0) + (2βm − βn−1 + |β0| − β0)

+ (2γr − γn−1 + |γ0| − γ0) + (2δs − δn−1 + |δ0| − δ0)
]
.

Now

|q| ≤
∣∣∣∣q + an−1

an
− 1
∣∣∣∣+
∣∣∣∣an − an−1

an

∣∣∣∣
≤ 1
|an|

[
(2αl − αn−1 + |α0| − α0) + (2βm − βn−1 + |β0| − β0)

+ (2γr − γn−1 + |γ0| − γ0) + (2δs − δn−1 + |δ0| − δ0)
]

+ 1
|an|

[
(αn−1 − αn) + (βn−1 − βn) + (γn−1 − γn) + (δn−1 − δn)

]
= 1
|an|

[
(2αl − αn + |α0| − α0) + (2βm − βn + |β0| − β0)

+ (2γr − γn + |γ0| − γ0) + (2δs − δn + |δ0| − δ0)
]
,

which shows that the point q belongs to the region defined by Theorem 1.1.
We now turn to study the zero-free regions of some special slice regular functions

of the form
∞∑
v=0

qvav with restricted coefficients, regular in the ball B(0, R), R > 0.

In this direction, we first prove the following quaternionic analogue of Theorem 1.3.

Theorem 2.2. Let f : B(0, R)→ H be a regular power series in the quaternionic
variable q, i.e., f(q) =

∞∑
v=0

qvav for all q ∈ B(0, R). If av, v = 0, 1, 2, . . . , are real

and positive satisfying
a0 ≥ ta1 ≥ t2a2 ≥ . . . ,

where 0 < t < R, then f(q) does not vanish in |q| < t.

Instead of proving Theorem 2.2, we prove the following more general result which
includes the above one as a consequence.

Theorem 2.3. Let f : B(0, R)→ H be a regular power series in the quaternionic
variable q, i.e., f(q) =

∞∑
v=0

qvav for all q ∈ B(0, R). If av, v = 0, 1, 2, . . . , are real

and positive satisfying
λa0 ≥ ta1 ≥ t2a2 ≥ . . .

for some λ ≥ 1 and 0 < t < R, then f(q) does not vanish in∣∣∣∣q − (λ− 1)t
2λ− 1

∣∣∣∣ < λt

2λ− 1 .

Remark 2.4. Taking λ = 1 in Theorem 2.3, we recover Theorem 2.2.
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Finally, we shall prove the following result for slice regular power series with
quaternionic coefficients when we have information about the modulli of the coef-
ficients.

Theorem 2.5. Let f : B(0, R)→ H be a regular power series in the quaternionic
variable q, i.e., f(q) =

∞∑
v=0

qvav for all q ∈ B(0, R). Let av, v = 0, 1, 2, . . . , be such

that for some λ ≥ 1 we have

λ|a0| ≥ t|a1| ≥ t2|a2| ≥ . . . ,

where 0 < t < R. Let b be a nonzero quaternion and suppose that ∠(av, b) ≤ θ ≤ π
2

for some θ and for v = 0, 1, 2, . . . . Then f(q) does not vanish in

∣∣∣∣q − (λ− 1)t
E2 − (λ− 1)2

∣∣∣∣ < Et

E2 − (λ− 1)2 ,

where E = λ(cos θ + sin θ) + 2 sin θ
|a0|

∞∑
v=1
|av|tv.

Remark 2.6. Taking θ = 0 and assuming b to be a positive real number in
Theorem 2.5, we recover Theorem 2.3.

3. Proofs of the main results

Proof of Theorem 2.1. Consider the polynomial

T (q) ∗ (1− q) = a0 + q(a1 − a0) + q2(a2 − a1) + . . . + qn(an − an−1)− qn+1an

= ψ(q) + qn(an − an−1)− qn+1an,

where ψ(q) = a0 + q(a1 − a0) + q2(a2 − a1) + . . . + qn−1(an−1 − an−2).
By Theorem 1.5, T (q) ∗ (1 − q) = 0 if and only if either T (q) = 0 or T (q) 6= 0

implies T (q)−1qT (q) − 1 = 0, that is T (q)−1qT (q) = 1. Thus, if T (q) 6= 0, this
implies q = 1, so the only zero of T (q) ∗ (1− q) are q = 1 and the zeros of T (q).

We first note that

|av − av−1| = |(αv − αv−1) + (βv − βv−1)i+ (γv − γv−1)j + (δv − δv−1)k|
≤ |αv − αv−1|+ |βv − βv−1|+ |γv − γv−1|+ |δv − δv−1|.

Rev. Un. Mat. Argentina, Vol. 67, No. 1 (2024)



206 ABDULLAH MIR

For |q| = 1, we have

|ψ(q)| ≤ |a0|+
n−1∑
v=1
|av − av−1|

≤ |α0|+ |β0|+ |γ0|+ |δ0|

+
n−1∑
v=1

(|αv − αv−1|+ |βv − βv−1|+ |γv − γv−1|+ |δv − δv−1|)

= |α0|+ |β0|+ |γ0|+ |δ0|+
l∑

v=1
(αv − αv−1) +

n−1∑
v=l+1

(αv−1 − αv)

+
m∑
v=1

(βv − βv−1) +
n−1∑

v=m+1
(βv−1 − βv) +

r∑
v=1

(γv − γv−1)

+
n−1∑
v=r+1

(γv−1 − γv) +
s∑

v=1
(δv − δv−1) +

n−1∑
v=s+1

(δv−1 − δv)

= 2αl − αn−1 + |α0| − α0 + 2βm − βn−1 + |β0| − β0

+ 2γr − γn−1 + |γ0| − γ0 + 2δs − δn−1 + |δ0| − δ0.

Notice that we have

max
|q|=1

∣∣∣∣qn ∗ ψ(1
q

)∣∣∣∣ = max
|q|=1

∣∣∣∣qnψ(1
q

)∣∣∣∣ = max
|q|=1

∣∣∣∣ψ(1
q

)∣∣∣∣ = max
|q|=1

|ψ(q)|.

It is clear that qn ∗ ψ
(

1
q

)
has the same bound on |q| = 1 as ψ, that is,∣∣∣∣qn ∗ ψ(1

q

)∣∣∣∣ ≤ (2αl − αn−1 + |α0| − α0) + (2βm − βn−1 + |β0| − β0)

+ (2γr − γn−1 + |γ0| − γ0) + (2δs − δn−1 + |δ0| − δ0) for |q| = 1.

Since qn ∗ ψ
(

1
q

)
is a polynomial and hence is regular in |q| ≤ 1, it follows by the

maximum modulus theorem (Theorem 1.6), that∣∣∣∣qn ∗ ψ(1
q

)∣∣∣∣ =
∣∣∣∣qnψ(1

q

)∣∣∣∣ ≤ (2αl − αn−1 + |α0| − α0) + (2βm − βn−1 + |β0| − β0)

+ (2γr − γn−1 + |γ0| − γ0) + (2δs − δn−1 + |δ0| − δ0) for |q| ≤ 1.

Hence∣∣∣∣ψ(1
q

)∣∣∣∣ ≤ 1
|qn|

[
(2αl − αn−1 + |α0| − α0) + (2βm − βn−1 + |β0| − β0)

+ (2γr − γn−1 + |γ0| − γ0) + (2δs − δn−1 + |δ0| − δ0)
]

for |q| ≤ 1.
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Replacing q by 1
q , we see that

|ψ(q)| ≤
[
(2αl − αn−1 + |α0| − α0) + (2βm − βn−1 + |β0| − β0)

+ (2γr − γn−1 + |γ0| − γ0) + (2δs − δn−1 + |δ0| − δ0)
]
|q|n for |q| ≥ 1.

(3.1)

For |q| ≥ 1, we have
|T (q) ∗ (1− q)| =

∣∣ψ(q) + qn(an − an−1)− qn+1an
∣∣

≥ |q|n|an|
∣∣∣∣q + an−1

an
− 1
∣∣∣∣− |ψ(q)|

≥ |q|n|an|
[ ∣∣∣∣q + an−1

an
− 1
∣∣∣∣− 1
|an|

{
(2αl − αn−1 + |α0| − α0)

+ (2βm − βn−1 + |β0| − β0) + (2γr − γn−1 + |γ0| − γ0)

+ (2δs − δn−1 + |δ0| − δ0)
}]

(by (3.1)).

Hence, if∣∣∣∣q + an−1

an
− 1
∣∣∣∣ > 1
|an|

[
(2αl − αn−1 + |α0| − α0) + (2βm − βn−1 + |β0| − β0)

+ (2γr − γn−1 + |γ0| − γ0) + (2δs − δn−1 + |δ0| − δ0)
]
,

then |T (q) ∗ (1 − q)| > 0, that is T (q) ∗ (1 − q) 6= 0. Therefore, it follows that all
the zeros of T (q) ∗ (1− q) whose norm is greater than or equal to one lie in∣∣∣∣q + an−1

an
− 1
∣∣∣∣ ≤ 1
|an|

[
(2αl − αn−1 + |α0| − α0) + (2βm − βn−1 + |β0| − β0)

+ (2γr − γn−1 + |γ0| − γ0) + (2δs − δn−1 + |δ0| − δ0)
]
.

(3.2)

We now show that all the zeros of T (q) ∗ (1− q) whose norm is less than or equal
to one also satisfy (3.2). Let q ∈ H be such that |q| ≤ 1; then∣∣∣∣q + an−1

an
− 1
∣∣∣∣ ≤ 1 +

∣∣∣∣an−1

an
− 1
∣∣∣∣

= |an|+ |an−1 − an|
|an|

≤ 1
|an|

[
αn + βn + γn + δn + αn−1 − αn + βn−1 − βn + γn−1 − γn

+ δn−1 − δn + |α0| − α0 + |β0| − β0 + |γ0| − γ0 + |δ0| − δ0
]

= 1
|an|

[
αn−1 + βn−1 + γn−1 + δn−1

+ |α0| − α0 + |β0| − β0 + |γ0| − γ0 + |δ0| − δ0
]
. (3.3)
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Now, by hypothesis,

αn−1 ≤ αl, 0 ≤ l ≤ n− 1,
βn−1 ≤ βm, 0 ≤ m ≤ n− 1,
γn−1 ≤ γr, 0 ≤ r ≤ n− 1,
δn−1 ≤ δs, 0 ≤ s ≤ n− 1;

therefore, we have

2(αn−1 + βn−1 + γn−1 + δn−1) ≤ 2(αl + βm + γr + δs).

Equivalently,

αn−1 + βn−1 + γn−1 + δn−1

≤ 2(αl + βm + γr + δs)− (αn−1 + βn−1 + γn−1 + δn−1).

Using this in (3.3), we get∣∣∣∣q + an−1

an
− 1
∣∣∣∣ ≤ 1
|an|

[
2(αl + βm + γr + δs)− (αn−1 + βn−1 + γn−1 + δn−1)

+ (|α0| − α0) + (|β0| − β0) + (|γ0| − γ0) + (|δ0| − δ0)
]
,

which is exactly the region defined by (3.2).
Since the only zeros of T (q) ∗ (1 − q) are q = 1 and the zeros of T (q), we have

that T (q) 6= 0 for∣∣∣∣q + an−1

an
− 1
∣∣∣∣ > 1
|an|

[
(2αl − αn−1 + |α0| − α0) + (2βm − βn−1 + |β0| − β0)

+ (2γr − γn−1 + |γ0| − γ0) + (2δs − δn−1 + |δ0| − δ0)
]
.

In other words, all the zeros of T (q) lie in∣∣∣∣q + an−1

an
− 1
∣∣∣∣ ≤ 1
|an|

[
(2αl − αn−1 + |α0| − α0) + (2βm − βn−1 + |β0| − β0)

+ (2γr − γn−1 + |γ0| − γ0) + (2δs − δn−1 + |δ0| − δ0)
]
.

This completes the proof of Theorem 2.1.

Proof of Theorem 2.3. Consider the power series

F (q) = (t− q) ∗ f(q)
= (t− q) ∗ (a0 + qa1 + q2a2 + . . . )
= ta0 − {q(a0 − ta1) + q2(a1 − ta2) + . . . }
= ta0 − qa0 + qλa0 − qψ(q),

where ψ(q) = (λa0 − ta1) +
∞∑
v=2

qv−1(av−1 − tav).
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For |q| = t, we have

|ψ(q)| ≤ |λa0 − ta1|+
∞∑
v=2
|q|v−1|av−1 − tav|

= (λa0 − ta1) +
∞∑
v=2

tv−1(av−1 − tav)

= λa0.

Since ψ(q) is regular in |q| ≤ t, it follows by the maximum modulus theorem
(Theorem 1.6), that

|ψ(q)| ≤ λa0 for |q| ≤ t. (3.4)

For |q| ≤ t, we have

|F (q)| = |ta0 − qa0 + qλa0 − qψ(q)|
≥ |ta0 − qa0 + qλa0| − |q||ψ(q)|
≥ |a0|[|q(λ− 1) + t| − |q|λ] (by (3.4))
> 0

if
|q|λ < |q(λ− 1) + t|,

i.e., if

α2 + β2 + γ2 + δ2 − 2t(λ− 1)α
2λ− 1 <

t2

2λ− 1 ,

or [
α−

(
λ− 1
2λ− 1

)
t

]2
+ β2 + γ2 + δ2 <

(
λt

2λ− 1

)2
,

which is precisely the disk{
q :
∣∣∣∣q − ( λ− 1

2λ− 1

)
t

∣∣∣∣ < λt

2λ− 1

}
. (3.5)

Since by Theorem 1.4, the only zeros of (t − q) ∗ f(q) are q = t and the zeros of
f(q), it follows that f(q) does not vanish in the disk defined by (3.5). This proves
Theorem 2.3.

We need the following auxiliary result due to Carney et al. [2] for the proof of
Theorem 2.5.

Lemma 3.1. Let q1, q2 ∈ H with q1 = α1 + β1i + γ1j + δ1k and q2 = α2 + β2i +
γ2j + δ2k, ](q1, q2) = 2θ′ ≤ 2θ and |q1| ≤ |q2|. Then

|q2 − q1| ≤ (|q2| − |q1|) cos θ + (|q2|+ |q1|) sin θ.
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Proof of Theorem 2.5. Again consider the power series

(t− q) ∗ f(q) = (t− q) ∗ (a0 + qa1 + q2a2 + . . . )
= ta0 − qa0 + qλa0 − qψ(q),

where ψ(q) = (λa0 − ta1) +
∞∑
v=2

qv−1(av−1 − tav). For |q| = t, we have

|ψ(q)| ≤ |λa0 − ta1|+
∞∑
v=2
|q|v−1|av−1 − tav|

≤ (λ|a0| − t|a1|) cos θ + (λ|a0|+ t|a1|) sin θ

+
∞∑
v=2

tv−1{(|av−1| − t|av|) cos θ + (|av−1|+ t|av|) sin θ
}

(by Lemma 3.1)

= λ|a0|(cos θ + sin θ) + 2 sin θ
∞∑
v=1
|av|tv

= |a0|E,

where E = λ(cos θ + sin θ) + 2 sin θ
|a0|

∞∑
v=1
|av|tv.

Now, proceeding similarly as in the proof of Theorem 2.3, it follows that

|F (q)| = |(t− q) ∗ f(q)| > 0

if
|q|E < |q(λ− 1) + t|,

i.e., if

α2 + β2 + γ2 + δ2 − 2t(λ− 1)α
E2 − (λ− 1)2 <

t2

E2 − (λ− 1)2 ,

or [
α− (λ− 1)t

E2 − (λ− 1)2

]2
+ β2 + γ2 + δ2 <

(
Et

E2 − (λ− 1)2

)2
,

which is precisely the disk{
q :
∣∣∣∣q − (λ− 1)t

E2 − (λ− 1)2

∣∣∣∣ < Et

E2 − (λ− 1)2

}
. (3.6)

Since by Theorem 1.4, the only zeros of (t−q)∗f(q) are q = t and the zeros of f(q),
it follows that f(q) does not vanish in the disk defined by (3.6). This completes
the proof of Theorem 2.5.
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