Asymptotic mean value formulas for parabolic nonlinear equations
DOI:
https://doi.org/10.33044/revuma.3169Abstract
In this paper we characterize viscosity solutions to nonlinear parabolic equations (including parabolic Monge-Ampère equations) by asymptotic mean value formulas. Our asymptotic mean value formulas can be interpreted from a probabilistic point of view in terms of dynamic programming principles for certain two-player, zero-sum games.
Downloads
References
H. Aimar, I. Gómez and B. Iaffei, Parabolic mean values and maximal estimates for gradients of temperatures, J. Funct. Anal. 255 (2008), no. 8, 1939–1956. MR 2462582.
A. R. Arroyo García, Nonlinear Mean Value Properties Related to the $p$-Laplacian, Ph.D. thesis, Universitat Autònoma de Barcelona, 2017. https://www.tdx.cat/handle/10803/405316.
P. Blanc, C. Esteve and J. D. Rossi, The evolution problem associated with eigenvalues of the Hessian, J. Lond. Math. Soc. (2) 102 (2020), no. 3, 1293–1317. MR 4186128.
P. Blanc, F. Charro, J. D. Rossi and J. J. Manfredi, A nonlinear mean value property for the Monge-Ampère operator, J. Convex Anal. 28 (2021), no. 2, 353–386. MR 4245872.
P. Blanc and J. D. Rossi, Game Theory and Partial Differential Equations, Berlin, Boston: De Gruyter, 2019.
P. Blanc and J. D. Rossi, Games for eigenvalues of the Hessian and concave/convex envelopes, J. Math. Pures Appl. (9) 127 (2019), 192–215. MR 3960142.
W. Blaschke, Ein Mittelwertsatz und eine kennzeichnende Eigenschaft des logarithmischen Potentials, Ber. Verh. Sächs. Akad. Wiss. Leipzig 68 (1916), 3–7. JFM 46.0742.01.
A. Bonfiglioli and E. Lanconelli, Subharmonic functions in sub-Riemannian settings, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 2, 387–441. MR 3017042.
L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge–Ampère equation, Comm. Pure Appl. Math. 37 (1984), no. 3, 369–402. MR 0739925.
L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985), no. 3-4, 261–301. MR 0806416.
D. Chopp, L. C. Evans and H. Ishii, Waiting time effects for Gauss curvature flows, Indiana Univ. Math. J. 48 (1999), no. 1, 311–334. MR 1722203.
M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 1–67. MR 1118699.
P. Daskalopoulos and O. Savin, $C^{1,alpha}$ regularity of solutions to parabolic Monge-Ampére equations, Amer. J. Math. 134 (2012), no. 4, 1051–1087. MR 2956257.
F. del Teso and E. Lindgren, A mean value formula for the variational $p$-Laplacian, NoDEA Nonlinear Differential Equations Appl. 28 (2021), no. 3, Paper No. 27, 33 pp. MR 4241463.
E. B. Fabes and N. Garofalo, Mean value properties of solutions to parabolic equations with variable coefficients, J. Math. Anal. Appl. 121 (1987), no. 2, 305–316. MR 0872228.
F. Ferrari, Q. Liu and J. Manfredi, On the characterization of $p$-harmonic functions on the Heisenberg group by mean value properties, Discrete Contin. Dyn. Syst. 34 (2014), no. 7, 2779–2793. MR 3177660.
W. J. Firey, Shapes of worn stones, Mathematika 21 (1974), 1–11. MR 0362045.
W. Fulks, A mean value theorem for the heat equation, Proc. Amer. Math. Soc. 17 (1966), 6–11. MR 0192200.
C. E. Gutiérrez and Q. Huang, $W^{2,p}$ estimates for the parabolic Monge-Ampère equation, Arch. Ration. Mech. Anal. 159 (2001), no. 2, 137–177. MR 1857377.
C. E. Gutiérrez and Q. Huang, A generalization of a theorem by Calabi to the parabolic Monge-Ampère equation, Indiana Univ. Math. J. 47 (1998), no. 4, 1459–1480. MR 1687122.
R. S. Hamilton, Worn stones with flat sides, in A Tribute to Ilya Bakelman (College Station, TX, 1993), 69–78, Discourses Math. Appl., 3, Texas A & M Univ., College Station, TX, 1994. MR 1423370.
A. E. Kogoj, E. Lanconelli and G. Tralli, An inverse mean value property for evolution equations, Adv. Differential Equations 19 (2014), no. 7-8, 783–804. MR 3252902.
Ü. Kuran, On the mean-value property of harmonic functions, Bull. London Math. Soc. 4 (1972), 311–312. MR 0320348.
E. Le Gruyer and J. C. Archer, Harmonious extensions, SIAM J. Math. Anal. 29 (1998), no. 1, 279–292. MR 1617186.
E. Le Gruyer, On absolutely minimizing Lipschitz extensions and PDE $Delta_infty(u)=0$, NoDEA Nonlinear Differential Equations Appl. 14 (2007), no. 1-2, 29–55. MR 2346452.
P. Lindqvist and J. Manfredi, On the mean value property for the $p$-Laplace equation in the plane, Proc. Amer. Math. Soc. 144 (2016), no. 1, 143–149. MR 3415584.
W. Littman, G. Stampacchia and H. F. Weinberger, Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 17 (1963), 43–77. MR 0161019.
J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for $p$-harmonic functions, Proc. Amer. Math. Soc. 138 (2010), no. 3, 881–889. MR 2566554.
J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games, SIAM J. Math. Anal. 42 (2010), no. 5, 2058–2081. MR 2684311.
J. J. Manfredi, M. Parviainen and J. D. Rossi, On the definition and properties of $p$-harmonious functions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11 (2012), no. 2, 215–241. MR 3011990.
Y. Peres, O. Schramm, S. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc. 22 (2009), no. 1, 167–210. MR 2449057.
Y. Peres and S. Sheffield, Tug-of-war with noise: a game-theoretic view of the $p$-Laplacian, Duke Math. J. 145 (2008), no. 1, 91–120. MR 2451291.
I. Privaloff, Sur les fonctions harmoniques, Mat. Sb. 32 (1925), no. 3, 464–471. JFM 51.0363.02.
N. Suzuki and N. A. Watson, A characterization of heat balls by a mean value property for temperatures, Proc. Amer. Math. Soc. 129 (2001), no. 9, 2709–2713. MR 1838795.
L. Tang, Regularity results on the parabolic Monge–Ampère equation with VMO type data, J. Differential Equations 255 (2013), no. 7, 1646–1656. MR 3072666.
K. Tso, Deforming a hypersurface by its Gauss–Kronecker curvature, Comm. Pure Appl. Math. 38 (1985), no. 6, 867–882. MR 0812353.
B. Wang and J. Bao, Asymptotic behavior on a kind of parabolic Monge–Ampère equation, J. Differential Equations 259 (2015), no. 1, 344–370. MR 3335929.
R. H. Wang and G. L. Wang, On existence, uniqueness and regularity of viscosity solutions for the first initial-boundary value problems to parabolic Monge-Ampère equation, Northeast. Math. J. 8 (1992), no. 4, 417–446. MR 1210195.
R. H. Wang and G. L. Wang, The geometric measure theoretical characterization of viscosity solutions to parabolic Monge-Ampère type equation, J. Partial Differential Equations 6 (1993), no. 3, 237–254. MR 1234574.
N. A. Watson, A theory of subtemperatures in several variables, Proc. London Math. Soc. (3) 26 (1973), 385–417. MR 0315289.
J. Xiong and J. Bao, On Jörgens, Calabi, and Pogorelov type theorem and isolated singularities of parabolic Monge–Ampère equations, J. Differential Equations 250 (2011), no. 1, 367–385. MR 2737847.
W. Zhang, J. Bao and B. Wang, An extension of Jörgens–Calabi–Pogorelov theorem to parabolic Monge–Ampère equation, Calc. Var. Partial Differential Equations 57 (2018), no. 3, Paper No. 90, 36 pp. MR 3800271.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Pablo Blanc, Fernando Charro, Juan Manfredi, Julio Daniel Rossi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. The Journal may retract the paper after publication if clear evidence is found that the findings are unreliable as a result of misconduct or honest error.