Clique coloring EPT graphs on bounded degree trees

Authors

  • Pablo De Caria CONICET and CMaPL (Centro de Matemática de La Plata), Argentina
  • María Pía Mazzoleni CONICET and CMaPL (Centro de Matemática de La Plata), Argentina
  • María Guadalupe Payo Vidal CONICET and CMaPL (Centro de Matemática de La Plata), Argentina

DOI:

https://doi.org/10.33044/revuma.3511

Abstract

The edge-intersection graph of a family of paths on a host tree is called an EPT graph. When the host tree has maximum degree $h$, we say that the graph is $[h,2,2]$. If the host tree also satisfies being a star, we have the corresponding classes of EPT-star and $[h,2,2]$-star graphs. In this paper, we prove that $[4,2,2]$-star graphs are $2$-clique colorable, we find other classes of EPT-star graphs that are also $2$-clique colorable, and we study the values of $h$ such that the class $[h,2,2]$-star is $3$-clique colorable. If a graph belongs to $[4,2,2]$ or $[5,2,2]$, we prove that it is $3$-clique colorable, even when the host tree is not a star. Moreover, we study some restrictions on the host trees to obtain subclasses that are $2$-clique colorable.

Downloads

Download data is not yet available.

References

L. Alcón, M. Gutierrez, and M. P. Mazzoleni, EPT graphs on bounded degree trees, Mat. Contemp. 42 (2012), 1–7.  DOI  MR  Zbl

T. Andreae, M. Schughart, and Z. Tuza, Clique-transversal sets of line graphs and complements of line graphs, Discrete Math. 88 no. 1 (1991), 11–20.  DOI  MR  Zbl

G. Bacsó, S. Gravier, A. Gyárfás, M. Preissmann, and A. Sebő, Coloring the maximal cliques of graphs, SIAM J. Discrete Math. 17 no. 3 (2004), 361–376.  DOI  MR  Zbl

G. Bacsó, Z. Ryjáček, and Z. Tuza, Coloring the cliques of line graphs, Discrete Math. 340 no. 11 (2017), 2641–2649.  DOI  MR  Zbl

B. Beauquier, J.-C. Bermond, L. Gargano, P. Hell, S. Pérennes, and U. Vaccaro, Graph problems arising from wavelength-routing in all-optical networks, in Proceedings of the Second Workshop on Optics and Computer Science, IPPS '97, 1997, also available as INRIA Rapport de recherche no. 3165, https://inria.hal.science/inria-00073523.

J. A. Bondy and U. S. R. Murty, Graph theory, Graduate Texts in Mathematics 244, Springer, New York, 2008.  MR  Zbl

C. N. Campos, S. Dantas, and C. P. de Mello, Colouring clique-hypergraphs of circulant graphs, in The IV Latin-American Algorithms, Graphs, and Optimization Symposium, Electron. Notes Discrete Math. 30, Elsevier, Amsterdam, 2008, pp. 189–194.  DOI  MR  Zbl

M. R. Cerioli and A. L. Korenchendler, Clique-coloring circular-arc graphs, in LAGOS'09—V Latin-American Algorithms, Graphs and Optimization Symposium, Electron. Notes Discrete Math. 35, Elsevier, Amsterdam, 2009, pp. 287–292.  DOI  MR  Zbl

M. R. Cerioli and P. Petito, Clique-coloring UE and UEH graphs, in The IV Latin-American Algorithms, Graphs, and Optimization Symposium, Electron. Notes Discrete Math. 30, Elsevier, Amsterdam, 2008, pp. 201–206.  DOI  MR  Zbl

P. Charbit, I. Penev, S. Thomassé, and N. Trotignon, Perfect graphs of arbitrarily large clique-chromatic number, J. Combin. Theory Ser. B 116 (2016), 456–464.  DOI  MR  Zbl

G. A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961), 71–76.  DOI  MR  Zbl

D. Duffus, H. A. Kierstead, and W. T. Trotter, Fibres and ordered set coloring, J. Combin. Theory Ser. A 58 no. 1 (1991), 158–164.  DOI  MR  Zbl

D. Duffus, B. Sands, N. Sauer, and R. E. Woodrow, Two-colouring all two-element maximal antichains, J. Combin. Theory Ser. A 57 no. 1 (1991), 109–116.  DOI  MR  Zbl

T. Erlebach and K. Jansen, Scheduling of virtual connections in fast networks, in Proceedings of the 4th Workshop on Parallel Systems and Algorithms PASA '96, World Scientific, Singapore, 1997, pp. 13–32.  DOI

T. Erlebach, A. Pagourtzis, K. Potika, and S. Stefanakos, Resource allocation problems in multifiber WDM tree networks, in Graph-theoretic concepts in computer science (WG 2003), Lecture Notes in Comput. Sci. 2880, Springer, Berlin, 2003, pp. 218–229.  DOI  MR  Zbl

M. C. Golumbic and R. E. Jamison, Edge and vertex intersection of paths in a tree, Discrete Math. 55 no. 2 (1985), 151–159.  DOI  MR  Zbl

M. C. Golumbic and R. E. Jamison, The edge intersection graphs of paths in a tree, J. Combin. Theory Ser. B 38 no. 1 (1985), 8–22.  DOI  MR  Zbl

M. C. Golumbic, M. Lipshteyn, and M. Stern, Representing edge intersection graphs of paths on degree 4 trees, Discrete Math. 308 no. 8 (2008), 1381–1387.  DOI  MR  Zbl

R. E. Jamison and H. M. Mulder, Constant tolerance intersection graphs of subtrees of a tree, Discrete Math. 290 no. 1 (2005), 27–46.  DOI  MR  Zbl

J. Kratochvíl and Z. Tuza, On the complexity of bicoloring clique hypergraphs of graphs, J. Algorithms 45 no. 1 (2002), 40–54.  DOI  MR  Zbl

T. A. McKee and F. R. McMorris, Topics in intersection graph theory, SIAM Monogr. Discrete Math. Appl., Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.  DOI  MR  Zbl

J. Mycielski, Sur le coloriage des graphs, Colloq. Math. 3 (1955), 161–162.  DOI  MR  Zbl

H. Poon, Coloring clique hypergraphs, Master's thesis, West Virginia University, 2000.  DOI

Downloads

Published

2025-03-29

Issue

Section

Article