Cofinite modules and cofiniteness of local cohomology modules
DOI:
https://doi.org/10.33044/revuma.3535Abstract
Let $n$ be a non-negative integer, $R$ a commutative Noetherian ring, $\mathfrak{a}$ an ideal of $R$, $M$ a finitely generated $R$-module, and $X$ an arbitrary $R$-module. In this paper, we first prove that if $\dim_R(M)\leq{n+2}$, then $\operatorname{H}^{i}_{\mathfrak{a}}(M)$ is an $(\operatorname{FD}_{ < n},\mathfrak{a})$-cofinite $R$-module and $\{\mathfrak{p}\in\operatorname{Ass}_R(\operatorname{H}^{i}_{\mathfrak{a}}(M)):\dim(R/\mathfrak{p})\geq{n}\}$ is a finite set for all $i$. As a consequence, it follows that $\operatorname{Ass}_R(\operatorname{H}^{i}_{\mathfrak{a}}(M))$ is a finite set for all $i$ when $R$ is a semi-local ring and $\dim_R(M)\leq{3}$. Then, we show that if $\dim(R/\mathfrak{a})\leq{n+1}$, then $\operatorname{Ext}^{i}_{R}(R/\mathfrak{a},X)$ is an $\operatorname{FD}_{ < n}$ $R$-module for all $i$ whenever $\operatorname{Ext}^{i}_{R}(R/\mathfrak{a},X)$ is an $\operatorname{FD}_{ < n}$ $R$-module for all $i\leq{\dim_R(X)-n}$. Finally, in the case that $\dim(R/\mathfrak{a})\leq{2}$, $X$ is $\mathfrak{a}$-torsion, and $n>0$ or $\operatorname{Supp}_R(X)\cap\operatorname{Var}(\mathfrak{a})\cap\operatorname{Max}(R)$ is finite, we prove that $X$ is an $(\operatorname{FD}_{ < n},\mathfrak{a})$-cofinite $R$-module when $\operatorname{Ext}^{i}_{R}(R/\mathfrak{a},X)$ is an $\operatorname{FD}_{ < n}$ $R$-module for all $i\leq{2-n}$. We conclude with some ordinary $\mathfrak{a}$-cofiniteness results for local cohomology modules $\operatorname{H}^{i}_{\mathfrak{a}}(X)$.
Downloads
References
N. Abazari and K. Bahmanpour, Extension functors of local cohomology modules and Serre categories of modules, Taiwanese J. Math. 19 no. 1 (2015), 211–220. DOI MR Zbl
M. Aghapournahr and K. Bahmanpour, Cofiniteness of weakly Laskerian local cohomology modules, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 57(105) no. 4 (2014), 347–356. MR Zbl
M. Aghapournahr, A. J. Taherizadeh, and A. Vahidi, Extension functors of local cohomology modules, Bull. Iranian Math. Soc. 37 no. 3 (2011), 117–134. MR Zbl
D. Asadollahi and R. Naghipour, Faltings' local-global principle for the finiteness of local cohomology modules, Comm. Algebra 43 no. 3 (2015), 953–958. DOI MR Zbl
K. Bahmanpour, On the category of weakly Laskerian cofinite modules, Math. Scand. 115 no. 1 (2014), 62–68. DOI MR Zbl
K. Bahmanpour and R. Naghipour, On the cofiniteness of local cohomology modules, Proc. Amer. Math. Soc. 136 no. 7 (2008), 2359–2363. DOI MR Zbl
K. Bahmanpour and R. Naghipour, Cofiniteness of local cohomology modules for ideals of small dimension, J. Algebra 321 no. 7 (2009), 1997–2011. DOI MR Zbl
K. Bahmanpour, R. Naghipour, and M. Sedghi, Cofiniteness with respect to ideals of small dimensions, Algebr. Represent. Theory 18 no. 2 (2015), 369–379. DOI MR Zbl
M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge, 1998. DOI MR Zbl
W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge, 1993. MR Zbl
G. Chiriacescu, Cofiniteness of local cohomology modules over regular local rings, Bull. London Math. Soc. 32 no. 1 (2000), 1–7. DOI MR Zbl
N. T. Cuong, S. Goto, and N. Van Hoang, On the cofiniteness of generalized local cohomology modules, Kyoto J. Math. 55 no. 1 (2015), 169–185. DOI MR Zbl
D. Delfino, On the cofiniteness of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 115 no. 1 (1994), 79–84. DOI MR Zbl
D. Delfino and T. Marley, Cofinite modules and local cohomology, J. Pure Appl. Algebra 121 no. 1 (1997), 45–52. DOI MR Zbl
K. Divaani-Aazar and A. Mafi, Associated primes of local cohomology modules, Proc. Amer. Math. Soc. 133 no. 3 (2005), 655–660. DOI MR Zbl
K. Divaani-Aazar and A. Mafi, Associated primes of local cohomology modules of weakly Laskerian modules, Comm. Algebra 34 no. 2 (2006), 681–690. DOI MR Zbl
R. Hartshorne, Affine duality and cofiniteness, Invent. Math. 9 (1970), 145–164. DOI MR Zbl
S. H. Hassanzadeh and A. Vahidi, On vanishing and cofiniteness of generalized local cohomology modules, Comm. Algebra 37 no. 7 (2009), 2290–2299. DOI MR Zbl
E. Hatami and M. Aghapournahr, Abelian category of weakly cofinite modules and local cohomology, Bull. Iranian Math. Soc. 47 no. 6 (2021), 1701–1714. DOI MR Zbl
C. Huneke, Problems on local cohomology, in Free resolutions in commutative algebra and algebraic geometry (Sundance, UT, 1990), Res. Notes Math. 2, Jones and Bartlett, Boston, MA, 1992, pp. 93–108. MR Zbl
C. Huneke and J. Koh, Cofiniteness and vanishing of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 110 no. 3 (1991), 421–429. DOI MR Zbl
H. Karimirad and M. Aghapournahr, Cominimaxness with respect to ideals of dimension two and local cohomology, J. Algebra Appl. 20 no. 5 (2021), Paper No. 2150081, 12 pp. DOI MR Zbl
K.-i. Kawasaki, On a category of cofinite modules which is Abelian, Math. Z. 269 no. 1-2 (2011), 587–608. DOI MR Zbl
L. Melkersson, Modules cofinite with respect to an ideal, J. Algebra 285 no. 2 (2005), 649–668. DOI MR Zbl
L. Melkersson, Cofiniteness with respect to ideals of dimension one, J. Algebra 372 (2012), 459–462. DOI MR Zbl
J. J. Rotman, An introduction to homological algebra, second ed., Universitext, Springer, New York, 2009. DOI MR Zbl
A. K. Singh, $p$-torsion elements in local cohomology modules, Math. Res. Lett. 7 no. 2-3 (2000), 165–176. DOI MR Zbl
A. Vahidi, M. Aghapournahr, and E. Mahmoudi Renani, Finiteness dimensions and cofiniteness of local cohomology modules, Rocky Mountain J. Math. 51 no. 3 (2021), 1079–1088. DOI MR Zbl
A. Vahidi and S. Morsali, Cofiniteness with respect to the class of modules in dimension less than a fixed integer, Taiwanese J. Math. 24 no. 4 (2020), 825–840. DOI MR Zbl
A. Vahidi and M. Papari-Zarei, Cofiniteness of local cohomology modules in the class of modules in dimension less than a fixed integer, Rev. Un. Mat. Argentina 62 no. 1 (2021), 191–198. DOI MR Zbl
K.-I. Yoshida, Cofiniteness of local cohomology modules for ideals of dimension one, Nagoya Math. J. 147 (1997), 179–191. DOI MR Zbl
T. Yoshizawa, Subcategories of extension modules by Serre subcategories, Proc. Amer. Math. Soc. 140 no. 7 (2012), 2293–2305. DOI MR Zbl
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Alireza Vahidi, Ahmad Khaksari, Mohammad Shirazipour
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. The Journal may retract the paper after publication if clear evidence is found that the findings are unreliable as a result of misconduct or honest error.