On a differential intermediate value property

Authors

  • Matthias Aschenbrenner Kurt Gödel Research Center for Mathematical Logic, Universität Wien, 1090 Wien, Austria
  • Lou van den Dries Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A.
  • Joris van der Hoeven CNRS, LIX, Ecole Polytechnique, 91128 Palaiseau Cedex, France

DOI:

https://doi.org/10.33044/revuma.2892

Abstract

Liouville closed $H$-fields are ordered differential fields where the ordering and derivation interact in a natural way and every linear differential equation of order $1$ has a nontrivial solution. (The introduction gives a precise definition.) For a Liouville closed $H$-field $K$ with small derivation we show that $K$ has the Intermediate Value Property for differential polynomials if and only if $K$ is elementarily equivalent to the ordered differential field of transseries. We also indicate how this applies to Hardy fields.

Downloads

Download data is not yet available.

References

M. Aschenbrenner and L. van den Dries, $H$-fields and their Liouville extensions, Math. Z. 242 (2002), no. 3, 543–588. MR 1985465.

M. Aschenbrenner and L. van den Dries, Liouville closed $H$-fields, J. Pure Appl. Algebra 197 (2005), no. 1-3, 83–139. MR 2123981.

M. Aschenbrenner, L. van den Dries and J. van der Hoeven, Asymptotic Differential Algebra and Model Theory of Transseries, Annals of Mathematics Studies, 195, Princeton University Press, Princeton, NJ, 2017. MR 3585498.

M. Aschenbrenner, L. van den Dries and J. van der Hoeven, On numbers, germs, and transseries, in Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. II. Invited lectures, 1–23, World Sci. Publ., Hackensack, NJ, 2018. MR 3966754.

N. Bourbaki, Éléments de mathématique. Fonctions d'une variable réelle, Théorie élémentaire, Nouvelle éd., Hermann, Paris, 1976. MR 0580296.

G. H. Hardy, Orders of Infinity, 2nd ed., Cambridge University Press, Cambridge, 1924.

J. van der Hoeven, Transseries and Real Differential Algebra, Lecture Notes in Mathematics, vol. 1888, Springer-Verlag, Berlin, 2006. MR 2262194.

J. van der Hoeven, Transserial Hardy fields, Astérisque No. 323 (2009), 453–487. MR 2647983.

M. F. Singer, The model theory of ordered differential fields, J. Symbolic Logic 43 (1978), no. 1, 82–91. MR 0495120.

S. Spodzieja, A geometric model of an arbitrary differentially closed field of characteristic zero, Trans. Amer. Math. Soc. 374 (2021), no. 1, 663–686. MR 4188196.

Downloads

Published

2022-03-18