On conformally compact Einstein manifolds
DOI:
https://doi.org/10.33044/revuma.3156Abstract
We survey some of the recent developments in the study of the compactness and uniqueness problems for some classes of conformally compact Einstein manifolds.
Downloads
References
M. T. Anderson, Einstein metrics with prescribed conformal infinity on 4-manifolds, Geom. Funct. Anal. 18 (2008), no. 2, 305–366. MR 2421542.
O. Biquard, Continuation unique à partir de l'infini conforme pour les métriques d'Einstein, Math. Res. Lett. 15 (2008), no. 6, 1091–1099. MR 2470386.
O. Biquard, Einstein deformations of hyperbolic metrics, in Surveys in Differential Geometry: Essays on Einstein Manifolds, 235–246, Surv. Differ. Geom., 6, Int. Press, Boston, MA, 1999. MR 1798612.
O. Biquard and M. Herzlich, Analyse sur un demi-espace hyperbolique et poly-homogénéité locale, Calc. Var. Partial Differential Equations 51 (2014), no. 3-4, 813–848. MR 3268872.
T. P. Branson, S.-Y. A. Chang and P. C. Yang, Estimates and extremals for zeta function determinants on four-manifolds, Comm. Math. Phys. 149 (1992), no. 2, 241–262. MR 1186028.
J. S. Case and S.-Y. A. Chang, On fractional GJMS operators, Comm. Pure Appl. Math. 69 (2016), no. 6, 1017–1061. MR 3493624.
S.-Y. A. Chang and Y. Ge, Compactness of conformally compact Einstein manifolds in dimension 4, Adv. Math. 340 (2018), 588–652. MR 3886176.
S.-Y. A. Chang, Y. Ge and J. Qing, Compactness of conformally compact Einstein 4-manifolds II, Adv. Math. 373 (2020), 107325, 33 pp. MR 4130465.
S.-Y. A. Chang, Y. Ge, X. Jin and J. Qing, On compactness of conformally compact Einstein manifolds and uniqueness of Graham–Lee metrics, III (in preparation).
S.-Y. A. Chang and J. Qing, The zeta functional determinants on manifolds with boundary. I. The formula, J. Funct. Anal. 147 (1997), no. 2, 327–362. MR 1454485.
S.-Y. A. Chang and J. Qing, The zeta functional determinants on manifolds with boundary. II. Extremal metrics and compactness of isospectral set, J. Funct. Anal. 147 (1997), no. 2, 363–399. MR 1454486.
S. Y. A. Chang and R. A. Yang, On a class of non-local operators in conformal geometry, Chin. Ann. Math. Ser. B 38 (2017), no. 1, 215–234. MR 3592161.
P. T. Chruściel, E. Delay, J. M. Lee and D. N. Skinner, Boundary regularity of conformally compact Einstein metrics, J. Differential Geom. 69 (2005), no. 1, 111–136. MR 2169584.
S. Dutta and M. Javaheri, Rigidity of conformally compact manifolds with the round sphere as the conformal infinity, Adv. Math. 224 (2010), no. 2, 525–538. MR 2609014.
C. Fefferman and C. R. Graham, Conformal invariants, Astérisque, no. S131 (1985), 95–116. MR 0837196.
C. Fefferman and C. R. Graham, $Q$-curvature and Poincaré metrics, Math. Res. Lett. 9 (2002), no. 2-3, 139–151. MR 1909634.
C. Fefferman and C. R. Graham, The Ambient Metric, Annals of Mathematics Studies, 178, Princeton University Press, Princeton, NJ, 2012. MR 2858236.
C. R. Graham, Volume and area renormalizations for conformally compact Einstein metrics, Rend. Circ. Mat. Palermo (2) Suppl. No. 63 (2000), 31–42. MR 1758076.
C. R. Graham and K. Hirachi, The ambient obstruction tensor and $Q$-curvature, in AdS/CFT Correspondence: Einstein Metrics and Their Conformal Boundaries, 59–71, IRMA Lect. Math. Theor. Phys., 8, Eur. Math. Soc., Zürich, 2005. MR 2160867.
C. R. Graham, R. Jenne, L. J. Mason and G. A. J. Sparling, Conformally invariant powers of the Laplacian. I. Existence, J. London Math. Soc. (2) 46 (1992), no. 3, 557–565. MR 1190438.
C. R. Graham and J. M. Lee, Einstein metrics with prescribed conformal infinity on the ball, Adv. Math. 87 (1991), no. 2, 186–225. MR 1112625.
C. R. Graham and M. Zworski, Scattering matrix in conformal geometry, Invent. Math. 152 (2003), no. 1, 89–118. MR 1965361.
M. J. Gursky and Q. Han, Non-existence of Poincaré–Einstein manifolds with prescribed conformal infinity, Geom. Funct. Anal. 27 (2017), no. 4, 863–879. MR 3678503.
M. J. Gursky, Q. Han and S. Stolz, An invariant related to the existence of conformally compact Einstein fillings, Trans. Amer. Math. Soc. 374 (2021), no. 6, 4185–4205. MR 4251226.
M. J. Gursky and G. Székelyhidi, A local existence result for Poincaré–Einstein metrics, Adv. Math. 361 (2020), 106912, 50 pp. MR 4041200.
S. W. Hawking and D. N. Page, Thermodynamics of black holes in anti-de Sitter space, Comm. Math. Phys. 87 (1982/83), no. 4, 577–588. MR 0691045.
D. W. Helliwell, Boundary regularity for conformally compact Einstein metrics in even dimensions, Comm. Partial Differential Equations 33 (2008), no. 4-6, 842–880. MR 2424380.
J. M. Lee, The spectrum of an asymptotically hyperbolic Einstein manifold, Comm. Anal. Geom. 3 (1995), no. 1-2, 253–271. MR 1362652.
J. M. Lee, Fredholm operators and Einstein metrics on conformally compact manifolds, Mem. Amer. Math. Soc. 183 (2006), no. 864, vi+83 pp. MR 2252687.
G. Li, J. Qing and Y. Shi, Gap phenomena and curvature estimates for conformally compact Einstein manifolds, Trans. Amer. Math. Soc. 369 (2017), no. 6, 4385–4413. MR 3624414.
J. Maldacena, The large $N$ limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998), no. 2, 231–252. MR 1633016.
J. M. Maldacena, TASI 2003 Lectures on AdS/CFT, https://arxiv.org/abs/hep-th/0309246, 2003.
J. Maldacena, Einstein gravity from conformal gravity, https://arxiv.org/abs/1105.5632 [hep-th], 2011.
S. M. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds (summary), SIGMA Symmetry Integrability Geom. Methods Appl. 4 (2008), Paper 036, 3 pp. MR 2393291.
J. Qing, On the rigidity for conformally compact Einstein manifolds, Int. Math. Res. Not. 2003, no. 21, 1141–1153. MR 1962123.
E. Witten, Anti de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998), no. 2, 253–291. MR 1633012.
P. Yang, S.-Yu. A. Chang and J. Qing, On the renormalized volumes for conformally compact Einstein manifolds, J. Math. Sci. (N.Y.) 149 (2008), no. 6, 1755–1769; MR 2336463.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Sun-Yung Alice Chang, Yuxin Ge
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. The Journal may retract the paper after publication if clear evidence is found that the findings are unreliable as a result of misconduct or honest error.