Haar wavelet characterization of dyadic Lipschitz regularity

Authors

  • Hugo Aimar Instituto de Matemática Aplicada del Litoral “Dra. Eleonor Harboure”, CONICET, UNL, Predio “Dr. Alberto Cassano”, Colectora Ruta Nac. 168 km 0, Paraje El Pozo, S3007ABA Santa Fe, Argentina
  • Carlos Exequiel Arias Instituto de Matemática Aplicada del Litoral “Dra. Eleonor Harboure”, CONICET, UNL, Predio “Dr. Alberto Cassano”, Colectora Ruta Nac. 168 km 0, Paraje El Pozo, S3007ABA Santa Fe, Argentina
  • Ivana Gómez Instituto de Matemática Aplicada del Litoral “Dra. Eleonor Harboure”, CONICET, UNL, Predio “Dr. Alberto Cassano”, Colectora Ruta Nac. 168 km 0, Paraje El Pozo, S3007ABA Santa Fe, Argentina

DOI:

https://doi.org/10.33044/revuma.3574

Abstract

We obtain a necessary and sufficient condition on the Haar coefficients of a real function $f$ defined on $\mathbb{R}^+$ for the Lipschitz $\alpha$ regularity of $f$ with respect to the ultrametric $\delta(x,y)=\inf \{|I|: x, y\in I; \, I\in\mathcal{D}\}$, where $\mathcal{D}$ is the family of all dyadic intervals in $\mathbb{R}^+$ and $\alpha$ is positive. Precisely, $f\in \mathrm{Lip}_\delta(\alpha)$ if and only if ${\vert\langle{f}{h^j_k}\rangle\vert}\leq C 2^{-(\alpha + 1/2)j}$ for some constant $C$, every $j\in\mathbb{Z}$ and every $k=0,1,2,\ldots$ Here, as usual, $h^j_k(x)= 2^{j/2}h(2^jx-k)$ and $h(x)=\mathcal{X}_{[0,1/2)}(x)-\mathcal{X}_{[1/2,1)}(x)$.

Downloads

Download data is not yet available.

References

H. Aimar and A. Bernardis, Fourier versus wavelets: a simple approach to Lipschitz regularity, Rev. Un. Mat. Argentina 40 no. 1-2 (1996), 219–224.  MR  Zbl

I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.  DOI  MR  Zbl

M. Holschneider and P. Tchamitchian, Régularité locale de la fonction “non-différentiable” de Riemann, in Les ondelettes en 1989 (Orsay, 1989), Lecture Notes in Math. 1438, Springer, Berlin, 1990, pp. 102–124.  DOI  MR

M. Holschneider and P. Tchamitchian, Pointwise analysis of Riemann's “nondifferentiable” function, Invent. Math. 105 no. 1 (1991), 157–175.  DOI  MR  Zbl

Downloads

Published

2024-12-26

Issue

Section

Article