Homogeneous Einstein manifolds

Authors

  • Michael Jablonski Department of Mathematics, University of Oklahoma, Norman, OK 73019-3103, USA

DOI:

https://doi.org/10.33044/revuma.3588

Abstract

This survey builds on the two surveys by Wang and Lauret, written 10–15 years ago, to give the current state of affairs regarding homogeneous Einstein spaces.

Downloads

Download data is not yet available.

References

D. Alekseevsky, I. Dotti, and C. Ferraris, Homogeneous Ricci positive $5$-manifolds, Pacific J. Math. 175 (1996), no. 1, 1–12. MR 1419469.

D. V. Alekseevskiĭ and B. N. Kimel'fel'd, Structure of homogeneous Riemannian spaces with zero Ricci curvature, Functional Anal. Appl. 9 (1975), no. 2, 97–102. MR 0402650.

M. T. Anderson, A survey of Einstein metrics on 4-manifolds, in Handbook of Geometric Analysis, No. 3, 1–39, Adv. Lect. Math. (ALM), 14, International Press, Somerville, MA, 2010. MR 2743446.

R. M. Arroyo, Filiform nilsolitons of dimension 8, Rocky Mountain J. Math. 41 (2011), no. 4, 1025–1043. MR 2826522.

R. M. Arroyo and R. A. Lafuente, The Alekseevskii conjecture in low dimensions, Math. Ann. 367 (2017), no. 1-2, 283–309. MR 3606442.

A. Arvanitoyeorgos, Progress on homogeneous Einstein manifolds and some open problems, Bull. Greek Math. Soc. 58 (2010/15), 75–97. MR 3585267.

A. Arvanitoyeorgos, Y. Sakane, and M. Statha, Homogeneous Einstein metrics on Stiefel manifolds associated to flag manifolds with two isotropy summands, J. Symbolic Comput. 101 (2020), 189–201. MR 4109715.

A. Arvanitoyeorgos, Y. Sakane, and M. Statha, Invariant Einstein metrics on SU$(n)$ and complex Stiefel manifolds, Tohoku Math. J. (2) 72 (2020), no. 2, 161–210. MR 4116694.

L. Bérard-Bergery, Sur la courbure des métriques riemanniennes invariantes des groupes de Lie et des espaces homogènes, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 4, 543–576. MR 0533067.

R. Berichon, The Alekseevskii conjecture in 9 and 10 dimensions, Differential Geom. Appl. 78 (2021), Paper No. 101782, 20 pp. MR 4280205.

A. L. Besse, Einstein Manifolds, Classics in Mathematics, Springer-Verlag, Berlin, 2008. MR 2371700.

S. Bochner, Vector fields and Ricci curvature, Bull. Amer. Math. Soc. 52 (1946), 776–797. MR 0018022.

C. Böhm, Homogeneous Einstein metrics and simplicial complexes, J. Differential Geom. 67 (2004), no. 1, 79–165. MR 2153482.

C. Böhm, Non-existence of homogeneous Einstein metrics, Comment. Math. Helv. 80 (2005), no. 1, 123–146. MR 2130570.

C. Böhm and M. M. Kerr, Low-dimensional homogeneous Einstein manifolds, Trans. Amer. Math. Soc. 358 (2006), no. 4, 1455–1468. MR 2186982.

C. Böhm and M. M. Kerr, Homogeneous Einstein metrics and butterflies, Ann. Global Anal. Geom. 63 (2023), no. 4, Paper No. 29, 92 pp. MR 4598537.

C. Böhm and R. A. Lafuente, Immortal homogeneous Ricci flows, Invent. Math. 212 (2018), no. 2, 461–529. MR 3787832.

C. Böhm and R. A. Lafuente, The Ricci flow on solvmanifolds of real type, Adv. Math. 352 (2019), 516–540. MR 3964154.

C. Böhm and R. A. Lafuente, Real geometric invariant theory, in Differential Geometry in the Large, 11–49, London Math. Soc. Lecture Note Ser., 463, Cambridge Univ. Press, Cambridge, 2021. MR 4420784.

C. Böhm and R. A. Lafuente, Homogeneous Einstein metrics on Euclidean spaces are Einstein solvmanifolds, Geom. Topol. 26 (2022), no. 2, 899–936. MR 4444271.

C. Böhm and R. A. Lafuente, Non-compact Einstein manifolds with symmetry, J. Amer. Math. Soc. 36 (2023), no. 3, 591–651. MR 4583772.

C. Böhm, M. Wang, and W. Ziller, A variational approach for compact homogeneous Einstein manifolds, Geom. Funct. Anal. 14 (2004), no. 4, 681–733. MR 2084976.

H. Chen, Z. Chen, and S. Deng, Non-naturally reductive Einstein metrics on SO$(n)$, Manuscripta Math. 156 (2018), no. 1-2, 127–136. MR 3783569.

Z. Chen and Yu. G. Nikonorov, Invariant Einstein metrics on generalized Wallach spaces, Sci. China Math. 62 (2019), no. 3, 569–584. MR 3905563.

B.-L. Chen and X.-P. Zhu, Uniqueness of the Ricci flow on complete noncompact manifolds, J. Differential Geom. 74 (2006), no. 1, 119–154. MR 2260930.

I. Chrysikos and Y. Sakane, Homogeneous Einstein metrics on non-Kähler C-spaces, J. Geom. Phys. 160 (2021), Paper No. 103996, 31 pp. MR 4176991.

J. E. D'Atri and W. Ziller, Naturally reductive metrics and Einstein metrics on compact Lie groups, Mem. Amer. Math. Soc. 18 (1979), no. 215, iii+72 pp. MR 0519928.

W. Dickinson and M. M. Kerr, The geometry of compact homogeneous spaces with two isotropy summands, Ann. Global Anal. Geom. 34 (2008), no. 4, 329–350. MR 2447903.

I. Dotti Miatello, Ricci curvature of left invariant metrics on solvable unimodular Lie groups, Math. Z. 180 (1982), no. 2, 257–263. MR 0661702.

I. Dotti Miatello, Transitive group actions and Ricci curvature properties, Michigan Math. J. 35 (1988), no. 3, 427–434. MR 0978312.

P. Eberlein, Riemannian 2-step nilmanifolds with prescribed Ricci tensor, in Geometric and Probabilistic Structures in Dynamics, 167–195, Contemp. Math., 469, Amer. Math. Soc., Providence, RI, 2008. MR 2478470.

J. Epstein and M. Jablonski, Maximal symmetry and solvmanifolds, in progress (2023).

E. A. Fernández-Culma, Classification of nilsoliton metrics in dimension seven, J. Geom. Phys. 86 (2014), 164–179. MR 3282320.

D. Glickenstein and T. L. Payne, Ricci flow on three-dimensional, unimodular metric Lie algebras, Comm. Anal. Geom. 18 (2010), no. 5, 927–961. MR 2805148.

C. Gordon, Riemannian isometry groups containing transitive reductive subgroups, Math. Ann. 248 (1980), no. 2, 185–192. MR 0573347.

C. S. Gordon and M. R. Jablonski, Einstein solvmanifolds have maximal symmetry, J. Differential Geom. 111 (2019), no. 1, 1–38. MR 3909903.

C. S. Gordon and M. R. Jablonski, Infinitesimal maximal symmetry and Ricci soliton solvmanifolds, arXiv:math/2112.09733 [math.DG], 2021.

C. S. Gordon and E. N. Wilson, The fine structure of transitive Riemannian isometry groups. I, Trans. Amer. Math. Soc. 289 (1985), no. 1, 367–380. MR 0779070.

C. S. Gordon and E. N. Wilson, Isometry groups of Riemannian solvmanifolds, Trans. Amer. Math. Soc. 307 (1988), no. 1, 245–269. MR 0936815.

M. M. Graev, The existence of invariant Einstein metrics on a compact homogeneous space, Trans. Moscow Math. Soc. 2012, 1–28. MR 3184965.

S. J. Hall, T. Murphy, and J. Waldron, Compact Hermitian symmetric spaces, coadjoint orbits, and the dynamical stability of the Ricci flow, J. Geom. Anal. 31 (2021), no. 6, 6195–6218. MR 4267642.

C. He, Cohomogeneity one manifolds with a small family of invariant metrics, Geom. Dedicata 157 (2012), 41–90. MR 2893479.

J. Heber, Noncompact homogeneous Einstein spaces, Invent. Math. 133 (1998), no. 2, 279–352. MR 1632782.

M. R. Jablonski, Real Geometric Invariant Theory and Ricci Soliton Metrics on Two-Step Nilmanifolds, Thesis (Ph.D), University of North Carolina, Chapel Hill, 2008. https://doi.org/10.17615/ynh9-k058.

M. Jablonski, Detecting orbits along subvarieties via the moment map, Münster J. Math. 3 (2010), 67–88. MR 2775356.

M. Jablonski, Concerning the existence of Einstein and Ricci soliton metrics on solvable Lie groups, Geom. Topol. 15 (2011), no. 2, 735–764. MR 2800365.

M. Jablonski, Moduli of Einstein and non-Einstein nilradicals, Geom. Dedicata 152 (2011), 63–84. MR 2795236.

M. Jablonski, Homogeneous Ricci solitons are algebraic, Geom. Topol. 18 (2014), no. 4, 2477–2486. MR 3268781.

M. Jablonski, Homogeneous Ricci solitons, J. Reine Angew. Math. 699 (2015), 159–182. MR 3305924.

M. Jablonski, Strongly solvable spaces, Duke Math. J. 164 (2015), no. 2, 361–402. MR 3306558.

M. Jablonski, Maximal symmetry and unimodular solvmanifolds, Pacific J. Math. 298 (2019), no. 2, 417–427. MR 3936023.

M. Jablonski and P. Petersen, A step towards the Alekseevskii conjecture, Math. Ann. 368 (2017), no. 1-2, 197–212. MR 3651571.

M. Jablonski, P. Petersen, and M. B. Williams, On the linear stability of expanding Ricci solitons, arXiv:1409.3251 [math.DG], 2014.

M. Jablonski, P. Petersen, and M. B. Williams, Linear stability of algebraic Ricci solitons, J. Reine Angew. Math. 713 (2016), 181–224. MR 3483629.

G. R. Jensen, Homogeneous Einstein spaces of dimension four, J. Differential Geometry 3 (1969), 309–349. MR 0261487.

G. R. Jensen, The scalar curvature of left-invariant Riemannian metrics, Indiana Univ. Math. J. 20 (1970/71), 1125–1144. MR 0289726.

F. C. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry, Mathematical Notes, 31, Princeton University Press, Princeton, NJ, 1984. MR 0766741.

K. Kröncke, Stability of Einstein metrics under Ricci flow, Comm. Anal. Geom. 28 (2020), no. 2, 351–394. MR 4101342.

R. Lafuente and J. Lauret, Structure of homogeneous Ricci solitons and the Alekseevskii conjecture, J. Differential Geom. 98 (2014), no. 2, 315–347. MR 3263520.

E. A. Lauret and J. Lauret, The stability of standard homogeneous Einstein manifolds, Math. Z. 303 (2023), no. 1, Paper No. 16, 36 pp.

J. Lauret, Ricci soliton homogeneous nilmanifolds, Math. Ann. 319 (2001), no. 4, 715–733. MR 1825405.

J. Lauret, Standard Einstein solvmanifolds as critical points, Q. J. Math. 52 (2001), no. 4, 463–470. MR 1874492.

J. Lauret, Finding Einstein solvmanifolds by a variational method, Math. Z. 241 (2002), no. 1, 83–99. MR 1930986.

J. Lauret, Degenerations of Lie algebras and geometry of Lie groups, Differential Geom. Appl. 18 (2003), no. 2, 177–194. MR 1958155.

J. Lauret, On the moment map for the variety of Lie algebras, J. Funct. Anal. 202 (2003), no. 2, 392–423. MR 1990531.

J. Lauret, Einstein solvmanifolds and nilsolitons, in New Developments in Lie Theory and Geometry, 1–35, Contemp. Math., 491, Amer. Math. Soc., Providence, RI, 2009. MR 2537049.

J. Lauret, Einstein solvmanifolds are standard, Ann. of Math. (2) 172 (2010), no. 3, 1859–1877. MR 2726101.

J. Lauret, The Ricci flow for simply connected nilmanifolds, Comm. Anal. Geom. 19 (2011), no. 5, 831–854. MR 2886709.

J. Lauret, Ricci soliton solvmanifolds, J. Reine Angew. Math. 650 (2011), 1–21. MR 2770554.

J. Lauret, Ricci flow of homogeneous manifolds, Math. Z. 274 (2013), no. 1-2, 373–403. MR 3054335.

J. Lauret, On the stability of homogeneous Einstein manifolds, Asian J. Math. 26 (2022), no. 4, 555–584. MR 4570996.

J. Lauret and D. Oscari, On non-singular 2-step nilpotent Lie algebras, Math. Res. Lett. 21 (2014), no. 3, 553–583. MR 3272030.

J. Lauret and C. Will, Einstein solvmanifolds: existence and non-existence questions, Math. Ann. 350 (2011), no. 1, 199–225. MR 2785768.

J. Lauret and C. E. Will, The Ricci pinching functional on solvmanifolds, Q. J. Math. 70 (2019), no. 4, 1281–1304. MR 4045101.

J. Lauret and C. E. Will, The Ricci pinching functional on solvmanifolds II, Proc. Amer. Math. Soc. 148 (2020), no. 6, 2601–2607. MR 4080900.

J. Lott, Dimensional reduction and the long-time behavior of Ricci flow, Comment. Math. Helv. 85 (2010), no. 3, 485–534. MR 2653690.

O. V. Manturov, Homogeneous Riemannian spaces with an irreducible rotation group, Trudy Sem. Vektor. Tenzor. Anal. 13 (1966), 68–145. MR 0210031.

A. Naber, Noncompact shrinking four solitons with nonnegative curvature, J. Reine Angew. Math. 645 (2010), 125–153. MR 2673425.

E. V. Nikitenko, Seven-dimensional homogeneous Einstein manifolds of negative sectional curvature, Mat. Tr. 9 (2006), no. 1, 101–116. MR 2251332.

E. V. Nikitenko and Yu. G. Nikonorov, Six-dimensional Einstein solvmanifolds, Mat. Tr. 8 (2005), no. 1, 71–121. MR 1955023.

Y. Nikolayevsky, Einstein solvmanifolds and the pre-Einstein derivation, Trans. Amer. Math. Soc. 363 (2011), no. 8, 3935–3958. MR 2792974.

Yu. G. Nikonorov, The scalar curvature functional and homogeneous Einstein metrics on Lie groups, Siberian Math. J. 39 (1998), no. 3, 504–509. MR 1639512.

Yu. G. Nikonorov, Compact homogeneous Einstein 7-manifolds, Geom. Dedicata 109 (2004), 7–30. MR 2113184.

Yu. G. Nikonorov, Noncompact homogeneous Einstein 5-manifolds, Geom. Dedicata 113 (2005), 107–143. MR 2171301.

Yu. G. Nikonorov, On Einstein extensions of nilpotent metric Lie algebras, Mat. Tr. 10 (2007), no. 1, 164–190. MR 2485371.

Yu. G. Nikonorov, Classification of generalized Wallach spaces, Geom. Dedicata 181 (2016), 193–212. MR 3475745.

Yu. G. Nikonorov and E. D. Rodionov, Compact homogeneous Einstein 6-manifolds, Differential Geom. Appl. 19 (2003), no. 3, 369–378. MR 2013101.

D. Oscari, On the existence of nilsolitons on 2-step nilpotent Lie groups, Adv. Geom. 14 (2014), no. 3, 483–497. MR 3228895.

T. L. Payne, The existence of soliton metrics for nilpotent Lie groups, Geom. Dedicata 145 (2010), 71–88. MR 2600946.

T. L. Payne, Geometric invariants for nilpotent metric Lie algebras with applications to moduli spaces of nilsoliton metrics, Ann. Global Anal. Geom. 41 (2012), no. 2, 139–160. MR 2876692.

P. Petersen and W. Wylie, On gradient Ricci solitons with symmetry, Proc. Amer. Math. Soc. 137 (2009), no. 6, 2085–2092. MR 2480290.

R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984), no. 2, 479–495. MR 0788292.

M. Y.-K. Wang, Einstein metrics from symmetry and bundle constructions: a sequel, in Differential Geometry, 253–309, Adv. Lect. Math. (ALM), 22, International Press, Somerville, MA, 2012. MR 3076055.

M. Y. Wang and W. Ziller, Existence and nonexistence of homogeneous Einstein metrics, Invent. Math. 84 (1986), no. 1, 177–194. MR 0830044.

M. Y. Wang and W. Ziller, Einstein metrics on principal torus bundles, J. Differential Geom. 31 (1990), no. 1, 215–248. MR 1030671.

C. Will, Rank-one Einstein solvmanifolds of dimension 7, Differential Geom. Appl. 19 (2003), no. 3, 307–318. MR 2013098.

C. Will, A curve of nilpotent Lie algebras which are not Einstein nilradicals, Monatsh. Math. 159 (2010), no. 4, 425–437. MR 2600907.

C. Will, The space of solvsolitons in low dimensions, Ann. Global Anal. Geom. 40 (2011), no. 3, 291–309. MR 2831460.

M. B. Williams and H. Wu, Dynamical stability of algebraic Ricci solitons, J. Reine Angew. Math. 713 (2016), 225–243. MR 3483630.

J. A. Wolf, The geometry and structure of isotropy irreducible homogeneous spaces, Acta Math. 120 (1968), 59–148. MR 0223501.

Z. Yan and S. Deng, Einstein metrics on compact simple Lie groups attached to standard triples, Trans. Amer. Math. Soc. 369 (2017), no. 12, 8587–8605. MR 3710636.

Z. Yan and S. Deng, Invariant Einstein metrics on certain compact semisimple Lie groups, Differential Geom. Appl. 59 (2018), 138–153. MR 3804826.

Downloads

Published

2023-08-25