Large-scale homogeneity and isotropy versus fine-scale condensation: A model based on Muckenhoupt-type densities

Authors

  • Hugo Aimar Instituto de Matemática Aplicada del Litoral, UNL, CONICET. CCT CONICET Santa Fe, Predio “Dr. Alberto Cassano”, Colectora Ruta Nac. 168 km 0, Paraje El Pozo, S3007ABA Santa Fe, Argentina
  • Federico Morana Instituto de Matemática Aplicada del Litoral, UNL, CONICET. CCT CONICET Santa Fe, Predio “Dr. Alberto Cassano”, Colectora Ruta Nac. 168 km 0, Paraje El Pozo, S3007ABA Santa Fe, Argentina

DOI:

https://doi.org/10.33044/revuma.3670

Abstract

In this brief note we aim to provide, through a well-known class of singular densities in harmonic analysis, a simple approach to the fact that the homogeneity of the universe on scales of the order of a hundred million light years is entirely compatible with the fine-scale condensation of matter and energy. We give precise and quantitative definitions of homogeneity and isotropy on large scales. Then we show that Muckenhoupt densities have the ingredients required for a model of the large-scale homogeneity and the fine-scale condensation of the universe. In particular, these densities can take locally infinitely large values (black holes) and, at the same time, they are independent of location at large scales. We also show some locally singular densities that satisfy the large-scale isotropy property.

Downloads

Download data is not yet available.

References

H. Aimar, M. Carena, R. Durán, and M. Toschi, Powers of distances to lower dimensional sets as Muckenhoupt weights, Acta Math. Hungar. 143 no. 1 (2014), 119–137.  DOI  MR  Zbl

T. C. Anderson, J. Lehrbäck, C. Mudarra, and A. V. Vähäkangas, Weakly porous sets and Muckenhoupt ${A}_p$ distance functions, J. Funct. Anal. 287 no. 8 (2024), article no. 110558, 34 pp.  DOI  MR  Zbl

R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250.  DOI  MR  Zbl

R. G. Durán and F. López García, Solutions of the divergence and analysis of the Stokes equations in planar Hölder-α domains, Math. Models Methods Appl. Sci. 20 no. 1 (2010), 95–120.  DOI  MR  Zbl

B. Dyda, L. Ihnatsyeva, J. Lehrbäck, H. Tuominen, and A. V. Vähäkangas, Muckenhoupt $A_p$-properties of distance functions and applications to Hardy–Sobolev-type inequalities, Potential Anal. 50 no. 1 (2019), 83–105.  DOI  MR  Zbl

J. García-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Math. Stud. 116, North-Holland, Amsterdam, 1985.  MR  Zbl

C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, W. H. Freeman, San Francisco, CA, 1973.  MR

B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226.  DOI  MR  Zbl

F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals, J. Funct. Anal. 73 no. 1 (1987), 179–194.  DOI  MR  Zbl

E. M. Stein, Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser. 43, Princeton University Press, Princeton, NJ, 1993.  DOI  MR  Zbl

Downloads

Published

2025-03-29

Issue

Section

Article