An improved lopsided shift-splitting preconditioner for three-by-three block saddle point problems

Authors

  • Jun Li School of Science, Lanzhou University of Technology, Lanzhou, Gansu 730050, People's Republic of China
  • Xiangtuan Xiong College of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China

DOI:

https://doi.org/10.33044/revuma.3672

Abstract

In this paper, a improved lopsided shift-splitting (ILSS) preconditioner is considered to solve the three-by-three block saddle point problems, this method is an improvement of the work of Zhang et al. [Comput. Appl. Math. (2022),41:261]. We proved that the iteration method produced by the ILSS preconditioner is unconditionally convergent. In addition, it proved that all eigenvalues of the ILSS preconditioned matrix are real and non-unit eigenvalues are located in a positive interval. Numerical experiments show that the ILSS preconditioner is effective.

Downloads

Download data is not yet available.

References

M. Abdolmaleki, S. Karimi, and D. K. Salkuyeh, A new block-diagonal preconditioner for a class of $3×3$ block saddle point problems, Mediterr. J. Math. 19 no. 1 (2022), Paper No. 43.  DOI  MR  Zbl

H. Aslani and D. K. Salkuyeh, Semi-convergence of the APSS method for a class of nonsymmetric three-by-three singular saddle point problems, 2022. arXiv:2208.00814 [math.NA].

H. Aslani, D. K. Salkuyeh, and F. P. A. Beik, On the preconditioning of three-by-three block saddle point problems, Filomat 35 no. 15 (2021), 5181–5194.  DOI  MR

Y. Cao, Shift-splitting preconditioners for a class of block three-by-three saddle point problems, Appl. Math. Lett. 96 (2019), 40–46.  DOI  MR  Zbl

P. Degond and P.-A. Raviart, An analysis of the Darwin model of approximation to Maxwell's equations, Forum Math. 4 no. 1 (1992), 13–44.  DOI  MR  Zbl

D. Han and X. Yuan, Local linear convergence of the alternating direction method of multipliers for quadratic programs, SIAM J. Numer. Anal. 51 no. 6 (2013), 3446–3457.  DOI  MR  Zbl

K. Hu and J. Xu, Structure-preserving finite element methods for stationary MHD models, Math. Comp. 88 no. 316 (2019), 553–581.  DOI  MR  Zbl

N. Huang, Variable parameter Uzawa method for solving a class of block three-by-three saddle point problems, Numer. Algorithms 85 no. 4 (2020), 1233–1254.  DOI  MR  Zbl

N. Huang, Y.-H. Dai, and Q. Hu, Uzawa methods for a class of block three-by-three saddle-point problems, Numer. Linear Algebra Appl. 26 no. 6 (2019), e2265.  DOI  MR  Zbl

N. Huang and C.-F. Ma, Spectral analysis of the preconditioned system for the $3×3$ block saddle point problem, Numer. Algorithms 81 no. 2 (2019), 421–444.  DOI  MR  Zbl

Q. Liu, C. Chen, and Q. Zhang, Perturbation analysis for total least squares problems with linear equality constraint, Appl. Numer. Math. 161 (2021), 69–81.  DOI  MR  Zbl

L. Meng, J. Li, and S.-X. Miao, A variant of relaxed alternating positive semi-definite splitting preconditioner for double saddle point problems, Japan J. Ind. Appl. Math. 38 no. 3 (2021), 979–998.  DOI  MR  Zbl

P. Monk, Analysis of a finite element method for Maxwell's equations, SIAM J. Numer. Anal. 29 no. 3 (1992), 714–729.  DOI  MR  Zbl

D. K. Salkuyeh, H. Aslani, and Z.-Z. Liang, An alternating positive semidefinite splitting preconditioner for the three-by-three block saddle point problems, Math. Commun. 26 no. 2 (2021), 177–195.  MR  Zbl Available at https://hrcak.srce.hr/261512.

L. Wang and K. Zhang, Generalized shift-splitting preconditioner for saddle point problems with block three-by-three structure, Open Access Library J. 6 (2019), e5968.  DOI

N.-N. Wang and J.-C. Li, On parameterized block symmetric positive definite preconditioners for a class of block three-by-three saddle point problems, J. Comput. Appl. Math. 405 (2022), Paper No. 113959.  DOI  MR  Zbl

X. Xie and H.-B. Li, A note on preconditioning for the $3×3$ block saddle point problem, Comput. Math. Appl. 79 no. 12 (2020), 3289–3296.  DOI  MR  Zbl

N. Zhang, R.-X. Li, and J. Li, Lopsided shift-splitting preconditioner for saddle point problems with three-by-three structure, Comput. Appl. Math. 41 no. 6 (2022), Paper No. 261.  DOI  MR  Zbl

Downloads

Published

2025-04-03

Issue

Section

Article