A note on Bernstein–Sato ideals

Authors

  • Josep Àlvarez Montaner Departament de Matemàtiques and Institut de Matemàtiques de la UPC-BarcelonaTech (IMTech), Universitat Politècnica de Catalunya; and Centre de Recerca Matemàtica (CRM)

DOI:

https://doi.org/10.33044/revuma.2795

Abstract

We define the Bernstein-Sato ideal associated to a tuple of ideals and we relate it to the jumping points of the corresponding mixed multiplier ideals.

Downloads

Download data is not yet available.

References

J. Àlvarez Montaner, J. Jeffries and L. Núñez-Betancourt, Bernstein–Sato polynomials in commutative algebra, in Commutative Algebra, 1–76, Springer, Cham, 2021. MR 4394404.

J. Briançon and P. Maisonobe, Bernstein–Sato ideals associated to polynomials I, Unpublished notes, 2002.

J. Briançon and H. Maynadier, Équations fonctionnelles généralisées: transversalité et principalité de l'idéal de Bernstein–Sato, J. Math. Kyoto Univ. 39 (1999), no. 2, 215–232. MR 1709290.

N. Budur, Bernstein–Sato polynomials, Lecture notes for the summer school Multiplier Ideals, Test Ideals, and Bernstein–Sato Polynomials, at UPC Barcelona, 2015. Available at https://perswww.kuleuven.be/ u0089821/Barcelona/BarcelonaNotes.pdf.

N. Budur, M. Mustaţă and M. Saito, Bernstein–Sato polynomials of arbitrary varieties, Compos. Math. 142 (2006), no. 3, 779–797. MR 2231202.

N. Budur and M. Saito, Multiplier ideals, $V$-filtration, and spectrum, J. Algebraic Geom. 14 (2005), no. 2, 269–282. MR 2123230.

P. Cassou-Noguès and A. Libgober, Multivariable Hodge theoretical invariants of germs of plane curves, J. Knot Theory Ramifications 20 (2011), no. 6, 787–805. MR 2812263.

L. Ein, R. Lazarsfeld, K. E. Smith and D. Varolin, Jumping coefficients of multiplier ideals, Duke Math. J. 123 (2004), no. 3, 469–506. MR 2068967.

M. Granger, Bernstein–Sato polynomials and functional equations, in Algebraic Approach to Differential Equations, 225–291, World Sci. Publ., Hackensack, NJ, 2010. MR 2766095.

R. Lazarsfeld, Positivity in Algebraic Geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 49, Springer-Verlag, Berlin, 2004. MR 2095472.

H. Maynadier, Polynômes de Bernstein–Sato associés à une intersection complète quasi-homogène à singularité isolée, Bull. Soc. Math. France 125 (1997), no. 4, 547–571. MR 1630902.

M. Mustaţă, Bernstein–Sato polynomials for general ideals vs. principal ideals, Proc. Amer. Math. Soc. 150 (2022), no. 9, 3655–3662. MR 4446219.

M. Mustaţă and M. Popa, Hodge ideals and minimal exponents of ideals, Rev. Roumaine Math. Pures Appl. 65 (2020), no. 3, 327–354. MR 4216533.

C. Sabbah, Proximité évanescente. II. Équations fonctionnelles pour plusieurs fonctions analytiques, Compositio Math. 64 (1987), no. 2, 213–241. MR 0916482.

Downloads

Published

2022-10-31