On a fractional Nirenberg equation: compactness and existence results

Authors

  • Randa Ben Mahmoud Sfax University, Faculty of Sciences of Sfax, 3018 Sfax, Tunisia
  • Azeb Alghanemi Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia

DOI:

https://doi.org/10.33044/revuma.3833

Abstract

This paper deals with a fractional Nirenberg equation of order $\sigma\in (0, n/2)$, $n\geq2$. We study the compactness defect of the associated variational problem. We determine precise characterizations of critical points at infinity of the problem, through the construction of a suitable pseudo-gradient at infinity. Such a construction requires detailed asymptotic expansions of the associated energy functional and its gradient. This study will then be used to derive new existence results for the equation.

Downloads

Download data is not yet available.

References

W. Abdelhedi and H. Chtioui, On a Nirenberg-type problem involving the square root of the Laplacian, J. Funct. Anal. 265 no. 11 (2013), 2937–2955.  DOI  MR  Zbl

W. Abdelhedi, H. Chtioui, and H. Hajaiej, A complete study of the lack of compactness and existence results of a fractional Nirenberg equation via a flatness hypothesis, I, Anal. PDE 9 no. 6 (2016), 1285–1315.  DOI  MR  Zbl

A. Alghanemi, W. Abdelhedi, and H. Chtioui, A complete study of the lack of compactness and existence results of a fractional Nirenberg equation via a flatness hypothesis. Part II, J. Math. Phys. Anal. Geom. 18 no. 1 (2022), 3–32.  DOI  MR  Zbl

A. Alghanemi and H. Chtioui, On a critical nonlinear problem involving the fractional Laplacian, Internat. J. Math. 32 no. 9 (2021), Paper No. 2150066, 35 pp.  DOI  MR  Zbl

A. Alghanemi and H. Chtioui, Perturbation theorems for fractional critical equations on bounded domains, J. Aust. Math. Soc. 111 no. 2 (2021), 159–178.  DOI  MR  Zbl

A. Bahri, Critical points at infinity in some variational problems, Pitman Research Notes in Mathematics Series 182, Longman Scientific & Technical, Harlow; John Wiley & Sons, New York, 1989.  MR  Zbl

A. Bahri, An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension, Duke Math. J. 81 no. 2 (1996), 323–466.  DOI  MR  Zbl

A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41 no. 3 (1988), 253–294.  DOI  MR  Zbl

A. Bahri and J.-M. Coron, The scalar-curvature problem on the standard three-dimensional sphere, J. Funct. Anal. 95 no. 1 (1991), 106–172.  DOI  MR  Zbl

R. Ben Mahmoud and H. Chtioui, Existence results for the prescribed scalar curvature on $S^3$, Ann. Inst. Fourier (Grenoble) 61 no. 3 (2011), 971–986.  DOI  MR  Zbl

R. Ben Mahmoud and H. Chtioui, Prescribing the scalar curvature problem on higher-dimensional manifolds, Discrete Contin. Dyn. Syst. 32 no. 5 (2012), 1857–1879.  DOI  MR  Zbl

M. Bhakta, S. Chakraborty, and P. Pucci, Fractional Hardy–Sobolev equations with nonhomogeneous terms, Adv. Nonlinear Anal. 10 no. 1 (2021), 1086–1116.  DOI  MR  Zbl

J. S. Case and S.-Y. A. Chang, On fractional GJMS operators, Comm. Pure Appl. Math. 69 no. 6 (2016), 1017–1061.  DOI  MR  Zbl

S.-Y. A. Chang and M. d. M. González, Fractional Laplacian in conformal geometry, Adv. Math. 226 no. 2 (2011), 1410–1432.  DOI  MR  Zbl

Y.-H. Chen, C. Liu, and Y. Zheng, Existence results for the fractional Nirenberg problem, J. Funct. Anal. 270 no. 11 (2016), 4043–4086.  DOI  MR  Zbl

E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 no. 5 (2012), 521–573.  DOI  MR  Zbl

Z. Djadli, A. Malchiodi, and M. O. Ahmedou, Prescribing a fourth order conformal invariant on the standard sphere. I. A perturbation result, Commun. Contemp. Math. 4 no. 3 (2002), 375–408.  DOI  MR  Zbl

Z. Djadli, A. Malchiodi, and M. O. Ahmedou, Prescribing a fourth order conformal invariant on the standard sphere. II. Blow up analysis and applications, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1 no. 2 (2002), 387–434.  MR  Zbl Available at https://eudml.org/doc/84475.

F. Fang, Infinitely many non-radial sign-changing solutions for a fractional Laplacian equation with critical nonlinearity, 2014. arXiv:1408.3187 [math.AP].

C. Fefferman and C. R. Graham, Juhl's formulae for GJMS operators and $Q$-curvatures, J. Amer. Math. Soc. 26 no. 4 (2013), 1191–1207.  DOI  MR  Zbl

C. R. Graham, R. Jenne, L. J. Mason, and G. A. J. Sparling, Conformally invariant powers of the Laplacian. I. Existence, J. London Math. Soc. (2) 46 no. 3 (1992), 557–565.  DOI  MR  Zbl

C. R. Graham and M. Zworski, Scattering matrix in conformal geometry, Invent. Math. 152 no. 1 (2003), 89–118.  DOI  MR  Zbl

H. Hajaiej, L. Molinet, T. Ozawa, and B. Wang, Necessary and sufficient conditions for the fractional Gagliardo–Nirenberg inequalities and applications to Navier–Stokes and generalized boson equations, in Harmonic analysis and nonlinear partial differential equations, RIMS Kôkyûroku Bessatsu, B26, Res. Inst. Math. Sci. (RIMS), Kyoto, 2011, pp. 159–175.  MR  Zbl Available at http://hdl.handle.net/2433/187879.

T. Jin, Y. Li, and J. Xiong, On a fractional Nirenberg problem, Part I: Blow up analysis and compactness of solutions, J. Eur. Math. Soc. (JEMS) 16 no. 6 (2014), 1111–1171.  DOI  MR  Zbl

T. Jin, Y. Li, and J. Xiong, On a fractional Nirenberg problem, Part II: Existence of solutions, Int. Math. Res. Not. IMRN no. 6 (2015), 1555–1589.  DOI  MR  Zbl

T. Jin, Y. Li, and J. Xiong, The Nirenberg problem and its generalizations: a unified approach, Math. Ann. 369 no. 1-2 (2017), 109–151.  DOI  MR  Zbl

Y. Li, Z. Tang, and N. Zhou, Compactness and existence results of the prescribing fractional $Q$-curvature problem on $S^n$, Calc. Var. Partial Differential Equations 62 no. 2 (2023), Paper No. 58, 43 pp.  DOI  MR  Zbl

Y. Y. Li, Prescribing scalar curvature on $S^n$ and related problems. I, J. Differential Equations 120 no. 2 (1995), 319–410.  DOI  MR  Zbl

Y. Y. Li, Prescribing scalar curvature on $S^n$ and related problems. II. Existence and compactness, Comm. Pure Appl. Math. 49 no. 6 (1996), 541–597.  DOI  MR  Zbl

Y. Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J. 80 no. 2 (1995), 383–417.  DOI  MR  Zbl

S. Liang, P. Pucci, and B. Zhang, Existence and multiplicity of solutions for critical nonlocal equations with variable exponents, Appl. Anal. 102 no. 15 (2023), 4306–4329.  DOI  MR  Zbl

A. Malchiodi and M. Mayer, Prescribing Morse scalar curvatures: pinching and Morse theory, Comm. Pure Appl. Math. 76 no. 2 (2023), 406–450.  DOI  MR  Zbl

P. Pucci and L. Temperini, Existence for fractional $(p,q)$ systems with critical and Hardy terms in ℝ$^N$, Nonlinear Anal. 211 (2021), Paper No. 112477, 33 pp.  DOI  MR  Zbl

P. Pucci and L. Temperini, On the concentration-compactness principle for Folland–Stein spaces and for fractional horizontal Sobolev spaces, Math. Eng. 5 no. 1 (2023), Paper No. 007, 21 pp.  DOI  MR  Zbl

K. Sharaf, On the prescribed scalar curvature problem on $S^n$: Part 1, asymptotic estimates and existence results, Differential Geom. Appl. 49 (2016), 423–446.  DOI  MR  Zbl

K. Sharaf and H. Chtioui, Conformal metrics with prescribed fractional $Q$-curvatures on the standard $n$-dimensional sphere, Differential Geom. Appl. 68 (2020), Paper No. 101562, 21 pp.  DOI  MR  Zbl

J. Wei and X. Xu, Prescribing $Q$-curvature problem on $S^n$, J. Funct. Anal. 257 no. 7 (2009), 1995–2023.  DOI  MR  Zbl

M. Zhu, Prescribing integral curvature equation, Differential Integral Equations 29 no. 9-10 (2016), 889–904.  DOI  MR  Zbl

Downloads

Published

2025-05-21

Issue

Section

Article