Ricci-Bourguignon solitons on real hypersurfaces in the complex projective space
DOI:
https://doi.org/10.33044/revuma.3849Abstract
We give a complete classification of Ricci–Bourguignon solitons on real hypersurfaces in the complex projective space $\mathbb{C}P^n=SU_{n+1}/S(U_1 \cdot U_n)$. Next, as an application, we give some non-existence properties for gradient Ricci–Bourguignon solitons on real hypersurfaces with isometric Reeb flow and contact real hypersurfaces in the complex projective space $\mathbb{C}P^n$.
Downloads
References
J. Berndt and Y. J. Suh, Real hypersurfaces in Hermitian symmetric spaces, Advances in Analysis and Geometry 5, De Gruyter, Berlin, 2022. DOI MR Zbl
A. M. Blaga and H. M. Taştan, Some results on almost $η$-Ricci–Bourguignon solitons, J. Geom. Phys. 168 (2021), article no. 104316. DOI MR Zbl
D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509, Springer, Berlin-New York, 1976. MR Zbl
J.-P. Bourguignon, Une stratification de l'espace des structures riemanniennes, Compositio Math. 30 (1975), 1–41. MR Zbl
J.-P. Bourguignon, Ricci curvature and Einstein metrics, in Global differential geometry and global analysis (Berlin, 1979), Lecture Notes in Math. 838, Springer, Berlin, 1981, pp. 42–63. MR Zbl
G. Catino, L. Cremaschi, Z. Djadli, C. Mantegazza, and L. Mazzieri, The Ricci–Bourguignon flow, Pacific J. Math. 287 no. 2 (2017), 337–370. DOI MR Zbl
G. Catino and L. Mazzieri, Gradient Einstein solitons, Nonlinear Anal. 132 (2016), 66–94. DOI MR Zbl
G. Catino, L. Mazzieri, and S. Mongodi, Rigidity of gradient Einstein shrinkers, Commun. Contemp. Math. 17 no. 6 (2015), article no. 1550046. DOI MR Zbl
T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 no. 2 (1982), 481–499. DOI MR Zbl
P. Cernea and D. Guan, Killing fields generated by multiple solutions to the Fischer–Marsden equation, Internat. J. Math. 26 no. 4 (2015), article no. 1540006. DOI MR Zbl
S. K. Chaubey, U. C. De, and Y. J. Suh, Kenmotsu manifolds satisfying the Fischer–Marsden equation, J. Korean Math. Soc. 58 no. 3 (2021), 597–607. DOI MR Zbl
S. K. Chaubey, Y. J. Suh, and U. C. De, Characterizations of the Lorentzian manifolds admitting a type of semi-symmetric metric connection, Anal. Math. Phys. 10 no. 4 (2020), article no. 61. DOI MR Zbl
U. C. De, S. K. Chaubey, and Y. J. Suh, Gradient Yamabe and gradient $m$-quasi Einstein metrics on three-dimensional cosymplectic manifolds, Mediterr. J. Math. 18 no. 3 (2021), article no. 80. DOI MR Zbl
M. Djorić and M. Okumura, CR submanifolds of complex projective space, Developments in Mathematics 19, Springer, New York, 2010. DOI MR Zbl
S. Dwivedi, Some results on Ricci–Bourguignon solitons and almost solitons, Canad. Math. Bull. 64 no. 3 (2021), 591–604. DOI MR Zbl
R. S. Hamilton, The Ricci flow on surfaces, in Mathematics and general relativity (Santa Cruz, CA, 1986), Contemp. Math. 71, American Mathematical Society, Providence, RI, 1988, pp. 237–262. DOI MR Zbl
S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics 34, American Mathematical Society, Providence, RI, 2001. DOI MR Zbl
I. Jeong and Y. J. Suh, Pseudo anti-commuting and Ricci soliton real hypersurfaces in complex two-plane Grassmannians, J. Geom. Phys. 86 (2014), 258–272. DOI MR Zbl
U.-H. Ki and Y. J. Suh, On real hypersurfaces of a complex space form, Math. J. Okayama Univ. 32 (1990), 207–221. MR Zbl
S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol. II, Wiley Classics Library, John Wiley & Sons, New York, 1996. MR Zbl
J. Morgan and G. Tian, Ricci flow and the Poincaré conjecture, Clay Mathematics Monographs 3, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2007. MR Zbl
M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355–364. DOI MR Zbl
B. O'Neill, Semi-Riemannian geometry, Pure and Applied Mathematics 103, Academic Press, New York, 1983. MR Zbl
G. Perelman, Ricci flow with surgery on three-manifolds, 2003. arXiv:math/0303109 [math.DG].
J. D. Pérez, Commutativity of Cho and structure Jacobi operators of a real hypersurface in a complex projective space, Ann. Mat. Pura Appl. (4) 194 no. 6 (2015), 1781–1794. DOI MR Zbl
A. Romero, On a certain class of complex Einstein hypersurfaces in indefinite complex space forms, Math. Z. 192 no. 4 (1986), 627–635. DOI MR Zbl
A. Romero, Some examples of indefinite complete complex Einstein hypersurfaces not locally symmetric, Proc. Amer. Math. Soc. 98 no. 2 (1986), 283–286. DOI MR Zbl
B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math. (2) 85 (1967), 246–266. DOI MR Zbl
Y. J. Suh, Real hypersurfaces of type $B$ in complex two-plane Grassmannians, Monatsh. Math. 147 no. 4 (2006), 337–355. DOI MR Zbl
Y. J. Suh, Hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannians, Adv. in Appl. Math. 50 no. 4 (2013), 645–659. DOI MR Zbl
Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with harmonic curvature, J. Math. Pures Appl. (9) 100 no. 1 (2013), 16–33. DOI MR Zbl
R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495–506. MR Zbl Available at http://projecteuclid.org/euclid.ojm/1200694557.
Y. Wang, Ricci solitons on almost Kenmotsu 3-manifolds, Open Math. 15 no. 1 (2017), 1236–1243. DOI MR Zbl
Y. Wang, Ricci solitons on almost co-Kähler manifolds, Canad. Math. Bull. 62 no. 4 (2019), 912–922. DOI MR Zbl
K. Yano and M. Kon, CR submanifolds of Kaehlerian and Sasakian manifolds, Progress in Mathematics 30, Birkhäuser, Boston, MA, 1983. MR Zbl
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Imsoon Jeong, Young Jin Suh

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. The Journal may retract the paper after publication if clear evidence is found that the findings are unreliable as a result of misconduct or honest error.