Principality by reduced ideals in pure cubic number fields
DOI:
https://doi.org/10.33044/revuma.3862Abstract
This paper describes a method for determining the list of reduced ideals of any pure cubic number field, which we can use for testing the principality of these fields and give a generator for a principal ideal.
Downloads
References
Ş. Alaca and K. S. Williams, Introductory algebraic number theory, Cambridge University Press, Cambridge, 2004. MR Zbl
A. Azizi, J. Benamara, M. C. Ismaili, and M. Talbi, The reduced ideals of a special order in a pure cubic number field, Arch. Math. (Brno) 56 no. 3 (2020), 171–182. DOI MR Zbl
J. Buchmann, On the computation of units and class numbers by a generalization of Lagrange's algorithm, J. Number Theory 26 no. 1 (1987), 8–30. DOI MR Zbl
J. Buchmann and H. C. Williams, A key-exchange system based on imaginary quadratic fields, J. Cryptology 1 no. 2 (1988), 107–118. DOI MR Zbl
H. Cohen, A course in computational algebraic number theory, Grad. Texts in Math. 138, Springer, Berlin, 1993. DOI MR Zbl
B. N. Delone and D. K. Faddeev, The theory of irrationalities of the third degree, Transl. Math. Monogr. 10, American Mathematical Society, Providence, RI, 1964. MR Zbl
G. T. Jacobs, Reduced ideals and periodic sequences in pure cubic fields, Ph.D. thesis, University of North Texas, 2015. DOI MR
R. A. Mollin, Quadratics, Discrete Math. Appl., CRC Press, Boca Raton, FL, 1996. MR Zbl
J. Neukirch, Algebraic number theory, Grundlehren Math. Wiss. 322, Springer, Berlin, 1999. DOI MR Zbl
J. J. Payan, Sur le groupe des classes d'un corps quadratique, Cours de l'institut Fourier 7 (1972), 2–30. Available at http://www.numdam.org/item?id=CIF_1972__7__2_0.
C. Prabpayak, Orders in pure cubic number fields, Grazer Math. Ber. 361, Institut für Mathematik, Karl-Franzens-Universität Graz, Graz, 2014. MR Zbl
R. Scheidler, J. A. Buchmann, and H. C. Williams, A key-exchange protocol using real quadratic fields, J. Cryptology 7 no. 3 (1994), 171–199. DOI MR Zbl
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jamal Benamara, Mohammed Talbi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. The Journal may retract the paper after publication if clear evidence is found that the findings are unreliable as a result of misconduct or honest error.