Combinatorial formulas for determinant, permanent, and inverse of some circulant matrices with three parameters

Authors

  • Cristian Panelo Departamento de Matemáticas, Facultad de Ciencias Físico-Matemáticas y Naturales, Universidad Nacional de San Luis, San Luis, Argentina
  • Andrés M. Encinas Departament de Matemàtiques, Universitat Politècnica de Catalunya, Barcelona, Spain
  • Denis E. Videla FaMAF – CIEM (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina

DOI:

https://doi.org/10.33044/revuma.3886

Abstract

In this work, we give closed formulas for determinant, permanent, and inverse of circulant matrices with three non-zero coefficients. The techniques that we use are related to digraphs associated with these matrices.

Downloads

Download data is not yet available.

References

J. Bang-Jensen and G. Gutin, Digraphs: Theory, algorithms and applications, second ed., Springer Monographs in Mathematics, Springer, London, 2009.  DOI  MR  Zbl

R. A. Brualdi, Permanent of the direct product of matrices, Pacific J. Math. 16 (1966), 471–482.  DOI  MR  Zbl

R. A. Brualdi and D. Cvetković, A combinatorial approach to matrix theory and its applications, Discrete Mathematics and its Applications, CRC Press, Boca Raton, FL, 2009.  DOI  MR  Zbl

A. Carmona, A. M. Encinas, S. Gago, M. J. Jiménez, and M. Mitjana, The inverses of some circulant matrices, Appl. Math. Comput. 270 (2015), 785–793.  DOI  MR  Zbl

A. Carmona, A. M. Encinas, M. J. Jimenez, and M. Mitjana, The group inverse of circulant matrices depending on four parameters, Spec. Matrices 10 (2022), 87–108.  DOI  MR  Zbl

P. J. Davis, Circulant matrices, second ed., AMS Chelsea Publishing, New York, 1994.  Zbl

A. M. Encinas, D. A. Jaume, C. Panelo, and A. Pastine, Drazin inverse of singular adjacency matrices of directed weighted cycles, Rev. Un. Mat. Argentina 61 no. 2 (2020), 209–227.  DOI  MR  Zbl

A. M. Encinas, D. A. Jaume, C. Panelo, and D. E. Videla, Using digraphs to compute determinant, permanent, and Drazin inverse of circulant matrices with two parameters, Rev. Un. Mat. Argentina 67 no. 1 (2024), 81–106.  DOI  MR  Zbl

L. Fuyong, The inverse of circulant matrix, Appl. Math. Comput. 217 no. 21 (2011), 8495–8503.  DOI  MR  Zbl

Z. Jiang, Y. Gong, and Y. Gao, Invertibility and explicit inverses of circulant-type matrices with $k$-Fibonacci and $k$-Lucas numbers, Abstr. Appl. Anal. (2014), article no. 238953.  DOI  MR  Zbl

T. Mansour and Y. Sun, On the number of combinations without certain separations, European J. Combin. 29 no. 5 (2008), 1200–1206.  DOI  MR  Zbl

B. Radičić, On $k$-circulant matrices (with geometric sequence), Quaest. Math. 39 no. 1 (2016), 135–144.  DOI  MR  Zbl

S.-Q. Shen, J.-M. Cen, and Y. Hao, On the determinants and inverses of circulant matrices with Fibonacci and Lucas numbers, Appl. Math. Comput. 217 no. 23 (2011), 9790–9797.  DOI  MR  Zbl

W.-H. Steeb and Y. Hardy, Matrix calculus and Kronecker product, second ed., World Scientific, Hackensack, NJ, 2011.  DOI  MR  Zbl

Y. Yazlik and N. Taskara, On the inverse of circulant matrix via generalized $k$-Horadam numbers, Appl. Math. Comput. 223 (2013), 191–196.  DOI  MR  Zbl

Downloads

Published

2025-05-21

Issue

Section

Article