Variation and oscillation operators on weighted Morrey–Campanato spaces in the Schrödinger setting

Authors

  • Víctor Almeida Departamento de Análisis Matemático, Universidad de La Laguna, Campus de Anchieta, Avda. Astrofísico Sánchez, s/n, 38721 La Laguna, Santa Cruz de Tenerife, Spain
  • Jorge Betancor Departamento de Análisis Matemático, Universidad de La Laguna, Campus de Anchieta, Avda. Astrofísico Sánchez, s/n, 38721 La Laguna, Santa Cruz de Tenerife, Spain
  • Juan Carlos Fariña Departamento de Análisis Matemático, Universidad de La Laguna, Campus de Anchieta, Avda. Astrofísico Sánchez, s/n, 38721 La Laguna, Santa Cruz de Tenerife, Spain
  • Lourdes Rodríguez-Mesa Departamento de Análisis Matemático, Universidad de La Laguna, Campus de Anchieta, Avda. Astrofísico Sánchez, s/n, 38721 La Laguna, Santa Cruz de Tenerife, Spain

DOI:

https://doi.org/10.33044/revuma.4327

Abstract

We denote by $\mathcal{L}$ the Schrödinger operator with potential $V$, that is, $\mathcal{L}=-\Delta+V$, where it is assumed that $V$ satisfies a reverse Hölder inequality. We consider weighted Morrey&ndash;Campanato spaces ${\mathrm{BMO}}_{\mathcal{L},w}^\alpha (\mathbb{R}^d)$ and ${\mathrm{BLO}}_{\mathcal{L},w}^\alpha (\mathbb{R}^d)$ in the Schrödinger setting. We prove that the variation operator $V_\sigma (\{T_t\}_{t > 0})$, $\sigma > 2$, and the oscillation operator $O(\{T_t\}_{t > 0},\{t_j\}_{j\in\mathbb{Z}})$, where $t_j < t_{j+1}$, $j\in \mathbb{Z}$, $\displaystyle \lim_{j\rightarrow +\infty}t_j=+\infty$ and $\displaystyle\lim_{j\rightarrow -\infty }t_j=0$, being $T_t=t^k\partial _t^ke^{-t\mathcal{L}}$, $t > 0$, with $k\in \mathbb{N}$, are bounded operators from ${\rm BMO}_{\mathcal{L},w}^\alpha (\mathbb{R}^d)$ into ${\rm BLO}_{\mathcal{L},w}^\alpha (\mathbb{R}^d)$. We also establish the same property for the maximal operators defined by $\{t^k\partial _t^ke^{-t\mathcal L}\}_{t > 0}$, $k\in \mathbb{N}$.

Downloads

Download data is not yet available.

References

D. Beltran, R. Oberlin, L. Roncal, A. Seeger, and B. Stovall, Variation bounds for spherical averages, Math. Ann. 382 no. 1-2 (2022), 459–512.  DOI  MR  Zbl

J. J. Betancor, J. C. Fariña, E. Harboure, and L. Rodríguez-Mesa, $L^p$-boundedness properties of variation operators in the Schrödinger setting, Rev. Mat. Complut. 26 no. 2 (2013), 485–534.  DOI  MR  Zbl

J. J. Betancor, J. C. Fariña, E. Harboure, and L. Rodríguez-Mesa, Variation operators for semigroups and Riesz transforms on BMO in the Schrödinger setting, Potential Anal. 38 no. 3 (2013), 711–739.  DOI  MR  Zbl

B. Bongioanni, A. Cabral, and E. Harboure, Extrapolation for classes of weights related to a family of operators and applications, Potential Anal. 38 no. 4 (2013), 1207–1232.  DOI  MR  Zbl

B. Bongioanni, A. Cabral, and E. Harboure, Lerner's inequality associated to a critical radius function and applications, J. Math. Anal. Appl. 407 no. 1 (2013), 35–55.  DOI  MR  Zbl

B. Bongioanni, A. Cabral, and E. Harboure, Schrödinger type singular integrals: weighted estimates for $p=1$, Math. Nachr. 289 no. 11-12 (2016), 1341–1369.  DOI  MR  Zbl

B. Bongioanni, E. Harboure, and P. Quijano, Weighted inequalities for Schrödinger type singular integrals, J. Fourier Anal. Appl. 25 no. 3 (2019), 595–632.  DOI  MR  Zbl

B. Bongioanni, E. Harboure, and P. Quijano, Two weighted inequalities for operators associated to a critical radius function, Illinois J. Math. 64 no. 2 (2020), 227–259.  DOI  MR  Zbl

B. Bongioanni, E. Harboure, and P. Quijano, Weighted inequalities of Fefferman-Stein type for Riesz-Schrödinger transforms, Math. Inequal. Appl. 23 no. 3 (2020), 775–803.  DOI  MR  Zbl

B. Bongioanni, E. Harboure, and P. Quijano, Fractional powers of the Schrödinger operator on weigthed Lipschitz spaces, Rev. Mat. Complut. 35 no. 2 (2022), 515–543.  DOI  MR  Zbl

B. Bongioanni, E. Harboure, and P. Quijano, Behaviour of Schrödinger Riesz transforms over smoothness spaces, J. Math. Anal. Appl. 517 no. 2 (2023), Paper No. 126613, 31 pp.  DOI  MR  Zbl

B. Bongioanni, E. Harboure, and O. Salinas, Weighted inequalities for negative powers of Schrödinger operators, J. Math. Anal. Appl. 348 no. 1 (2008), 12–27.  DOI  MR  Zbl

B. Bongioanni, E. Harboure, and O. Salinas, Riesz transforms related to Schrödinger operators acting on BMO type spaces, J. Math. Anal. Appl. 357 no. 1 (2009), 115–131.  DOI  MR  Zbl

B. Bongioanni, E. Harboure, and O. Salinas, Classes of weights related to Schrödinger operators, J. Math. Anal. Appl. 373 no. 2 (2011), 563–579.  DOI  MR  Zbl

B. Bongioanni, E. Harboure, and O. Salinas, Commutators of Riesz transforms related to Schrödinger operators, J. Fourier Anal. Appl. 17 no. 1 (2011), 115–134.  DOI  MR  Zbl

B. Bongioanni, E. Harboure, and O. Salinas, Weighted inequalities for commutators of Schrödinger-Riesz transforms, J. Math. Anal. Appl. 392 no. 1 (2012), 6–22.  DOI  MR  Zbl

J. Bourgain, Pointwise ergodic theorems for arithmetic sets, Inst. Hautes Études Sci. Publ. Math. no. 69 (1989), 5–45, With an appendix by the author, H. Furstenberg, Y. Katznelson and D. S. Ornstein.  MR  Zbl Available at http://www.numdam.org/item?id=PMIHES_1989__69__5_0.

M. Bramanti, L. Brandolini, E. Harboure, and B. Viviani, Global $W^{2,p}$ estimates for nondivergence elliptic operators with potentials satisfying a reverse Hölder condition, Ann. Mat. Pura Appl. (4) 191 no. 2 (2012), 339–362.  DOI  MR  Zbl

T. A. Bui, Boundedness of variation operators and oscillation operators for certain semigroups, Nonlinear Anal. 106 (2014), 124–137.  DOI  MR  Zbl

J. T. Campbell, R. L. Jones, K. Reinhold, and M. Wierdl, Oscillation and variation for the Hilbert transform, Duke Math. J. 105 no. 1 (2000), 59–83.  DOI  MR  Zbl

J. T. Campbell, R. L. Jones, K. Reinhold, and M. Wierdl, Oscillation and variation for singular integrals in higher dimensions, Trans. Amer. Math. Soc. 355 no. 5 (2003), 2115–2137.  DOI  MR  Zbl

Y. Do, C. Muscalu, and C. Thiele, Variational estimates for paraproducts, Rev. Mat. Iberoam. 28 no. 3 (2012), 857–878.  DOI  MR  Zbl

J. Duoandikoetxea, Fourier Analysis, Graduate Studies in Mathematics 29, American Mathematical Society, Providence, RI, 2001, Translated and revised from the 1995 Spanish original by David Cruz-Uribe.  DOI  MR

X. T. Duong, L. Yan, and C. Zhang, On characterization of Poisson integrals of Schrödinger operators with BMO traces, J. Funct. Anal. 266 no. 4 (2014), 2053–2085.  DOI  MR  Zbl

J. Dziubański, G. Garrigós, T. Martínez, J. L. Torrea, and J. Zienkiewicz, BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math. Z. 249 no. 2 (2005), 329–356.  DOI  MR  Zbl

J. Dziubański and J. Zienkiewicz, Hardy space $H^1$ associated to Schrödinger operator with potential satisfying reverse Hölder inequality, Rev. Mat. Iberoamericana 15 no. 2 (1999), 279–296.  DOI  MR  Zbl

E. Harboure, O. Salinas, and B. Viviani, Boundedness of operators related to a degenerate Schrödinger semigroup, Potential Anal. 57 no. 3 (2022), 401–431.  DOI  MR  Zbl

J. Huang, P. Li, and Y. Liu, Regularity properties of the heat kernel and area integral characterization of Hardy space $H^1_Ꮭ$ related to degenerate Schrödinger operators, J. Math. Anal. Appl. 466 no. 1 (2018), 447–470.  DOI  MR  Zbl

R. L. Jones and K. Reinhold, Oscillation and variation inequalities for convolution powers, Ergodic Theory Dynam. Systems 21 no. 6 (2001), 1809–1829.  DOI  MR  Zbl

R. L. Jones, A. Seeger, and J. Wright, Strong variational and jump inequalities in harmonic analysis, Trans. Amer. Math. Soc. 360 no. 12 (2008), 6711–6742.  DOI  MR  Zbl

L. D. Ky, On $weak^*$-convergence in $H^1_L(ℝ^d)$, Potential Anal. 39 no. 4 (2013), 355–368.  DOI  MR  Zbl

C. Le Merdy and Q. Xu, Strong $q$-variation inequalities for analytic semigroups, Ann. Inst. Fourier (Grenoble) 62 no. 6 (2012), 2069–2097.  DOI  MR  Zbl

D. Lépingle, La variation d'ordre $p$ des semi-martingales, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36 no. 4 (1976), 295–316.  DOI  MR  Zbl

C.-C. Lin and H. Liu, BMO$_L(ℍ^n)$ spaces and Carleson measures for Schrödinger operators, Adv. Math. 228 no. 3 (2011), 1631–1688.  DOI  MR  Zbl

T. Ma, P. R. Stinga, J. L. Torrea, and C. Zhang, Regularity estimates in Hölder spaces for Schrödinger operators via a $T1$ theorem, Ann. Mat. Pura Appl. (4) 193 no. 2 (2014), 561–589.  DOI  MR  Zbl

T. Ma, J. L. Torrea, and Q. Xu, Weighted variation inequalities for differential operators and singular integrals, J. Funct. Anal. 268 no. 2 (2015), 376–416.  DOI  MR  Zbl

A. Mas and X. Tolsa, Variation for the Riesz transform and uniform rectifiability, J. Eur. Math. Soc. (JEMS) 16 no. 11 (2014), 2267–2321.  DOI  MR  Zbl

M. Mirek, E. M. Stein, and P. Zorin-Kranich, Jump inequalities for translation-invariant operators of Radon type on $ℤ^d$, Adv. Math. 365 (2020), 107065, 57 pp.  DOI  MR  Zbl

M. Mirek, B. Trojan, and P. Zorin-Kranich, Variational estimates for averages and truncated singular integrals along the prime numbers, Trans. Amer. Math. Soc. 369 no. 8 (2017), 5403–5423.  DOI  MR  Zbl

R. Oberlin, A. Seeger, T. Tao, C. Thiele, and J. Wright, A variation norm Carleson theorem, J. Eur. Math. Soc. (JEMS) 14 no. 2 (2012), 421–464.  DOI  MR  Zbl

J. Qian, The $p$-variation of partial sum processes and the empirical process, Ann. Probab. 26 no. 3 (1998), 1370–1383.  DOI  MR  Zbl

Z. W. Shen, $L^p$ estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 no. 2 (1995), 513–546.  MR  Zbl Available at http://www.numdam.org/item?id=AIF_1995__45_2_513_0.

Z. Shen, On fundamental solutions of generalized Schrödinger operators, J. Funct. Anal. 167 no. 2 (1999), 521–564.  DOI  MR  Zbl

L. Tang, Weighted norm inequalities for Schrödinger type operators, Forum Math. 27 no. 4 (2015), 2491–2532.  DOI  MR  Zbl

L. Tang and Q. Zhang, Variation operators for semigroups and Riesz transforms acting on weighted $L^p$ and BMO spaces in the Schrödinger setting, Rev. Mat. Complut. 29 no. 3 (2016), 559–621.  DOI  MR  Zbl

N. T. Varopoulos, L. Saloff-Coste, and T. Coulhon, Analysis and Geometry on Groups, Cambridge Tracts in Mathematics 100, Cambridge University Press, Cambridge, 1992.  MR

Z. Wang, P. Li, and C. Zhang, Boundedness of operators generated by fractional semigroups associated with Schrödinger operators on Campanato type spaces via $T1$ theorem, Banach J. Math. Anal. 15 no. 4 (2021), Paper No. 64, 37 pp.  DOI  MR  Zbl

L. Wu and L. Yan, Heat kernels, upper bounds and Hardy spaces associated to the generalized Schrödinger operators, J. Funct. Anal. 270 no. 10 (2016), 3709–3749.  DOI  MR  Zbl

D. Yang, D. Yang, and Y. Zhou, Endpoint properties of localized Riesz transforms and fractional integrals associated to Schrödinger operators, Potential Anal. 30 no. 3 (2009), 271–300.  DOI  MR  Zbl

D. Yang, D. Yang, and Y. Zhou, Localized BMO and BLO spaces on RD-spaces and applications to Schrödinger operators, Commun. Pure Appl. Anal. 9 no. 3 (2010), 779–812.  DOI  MR  Zbl

D. Yang, D. Yang, and Y. Zhou, Localized Morrey-Campanato spaces on metric measure spaces and applications to Schrödinger operators, Nagoya Math. J. 198 (2010), 77–119.  DOI  MR  Zbl

K. Yosida, Functional Analysis, fifth ed., Grundlehren der Mathematischen Wissenschaften 123, Springer-Verlag, Berlin-New York, 1978.  MR  Zbl

Q. Zhang and L. Tang, Variation operators on weighted Hardy and BMO spaces in the Schrödinger setting, Bull. Malays. Math. Sci. Soc. 45 no. 5 (2022), 2285–2312.  DOI  MR  Zbl

Downloads

Published

2023-09-21