Arithmetic properties of generalized Fibonacci numbers

Authors

  • Jhon J. Bravo Departamento de Matemáticas, Universidad del Cauca, Calle 5 No. 4–70, Popayán, Colombia
  • Carlos A. Gómez Departamento de Matemáticas, Universidad del Valle, Calle 13 No. 100–00, Cali, Colombia
  • Florian Luca School of Maths, Wits University, South Africa; and Centro de Ciencias Matemáticas, UNAM, Morelia, Mexico

DOI:

https://doi.org/10.33044/revuma.2937

Abstract

We present a survey of results concerning arithmetic properties of generalized Fibonacci sequences and certain Diophantine equations involving terms from that family of numbers. Most of these results have been recently obtained by the research groups in number theory at the Universities of Cauca (in Popayán) and of Valle (in Cali), Colombia, lead by the first two authors.

Downloads

Download data is not yet available.

References

A. Alahmadi, A. Altassan, F. Luca, and H. Shoaib, Products of $k$-Fibonacci numbers which are rep-digits, Publ. Math. Debrecen 97 (2020), no. 1-2, 101–115. MR 4128145.

M. A. Alekseyev, On the intersections of Fibonacci, Pell, and Lucas numbers, Integers 11 (2011), no. 3, 239–259. MR 2988061.

A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19–62. MR 1234835.

M. A. Bennett, On some exponential equations of S. S. Pillai, Canad. J. Math. 53 (2001), no. 5, 897–922. MR 1859761.

M. A. Bennett and Á. Pintér, Intersections of recurrence sequences, Proc. Amer. Math. Soc. 143 (2015), no. 6, 2347–2353. MR 3326017.

E. F. Bravo, J. J. Bravo, and F. Luca, Coincidences in generalized Lucas sequences, Fibonacci Quart. 52 (2014), no. 4, 296–306. MR 3276052.

E. F. Bravo, C. A. Gómez, and F. Luca, Product of consecutive tribonacci numbers with only one distinct digit, J. Integer Seq. 22 (2019), no. 6, Art. 19.6.3, 8 pp. MR 4020271.

J. J. Bravo, C. A. Gómez, and J. L. Herrera, On the intersection of $k$-Fibonacci and Pell numbers, Bull. Korean Math. Soc. 56 (2019), no. 2, 535–547. MR 3936488.

J. J. Bravo, C. A. Gómez, and F. Luca, Powers of two as sums of two $k$-Fibonacci numbers, Miskolc Math. Notes 17 (2016), no. 1, 85–100. MR 3527869.

J. J. Bravo, C. A. Gómez, and F. Luca, A Diophantine equation in $k$-Fibonacci numbers and repdigits, Colloq. Math. 152 (2018), no. 2, 299–315. MR 3794331.

J. J. Bravo and J. L. Herrera, Fibonacci numbers in generalized Pell sequences, Math. Slovaca 70 (2020), no. 5, 1057–1068. MR 4156807.

J. J. Bravo and J. L. Herrera, Repdigits in generalized Pell sequences, Arch. Math. (Brno) 56 (2020), no. 4, 249–262. MR 4173077.

J. J. Bravo, J. L. Herrera, and F. Luca, Common values of generalized Fibonacci and Pell sequences, J. Number Theory 226 (2021), 51–71. MR 4239716.

J. J. Bravo, J. L. Herrera, and F. Luca, On a generalization of the Pell sequence, Math. Bohem. 146 (2021), no. 2, 199–213. MR 4261368.

J. J. Bravo and F. Luca, Powers of two in generalized Fibonacci sequences, Rev. Colombiana Mat. 46 (2012), no. 1, 67–79. MR 2945671.

J. J. Bravo and F. Luca, Coincidences in generalized Fibonacci sequences, J. Number Theory 133 (2013), no. 6, 2121–2137. MR 3027957.

J. J. Bravo and F. Luca, On a conjecture about repdigits in $k$-generalized Fibonacci sequences, Publ. Math. Debrecen 82 (2013), no. 3-4, 623–639. MR 3066434.

J. J. Bravo and F. Luca, On the largest prime factor of the $k$-Fibonacci numbers, Int. J. Number Theory 9 (2013), no. 5, 1351–1366. MR 3077719.

J. J. Bravo and F. Luca, Repdigits as sums of two $k$-Fibonacci numbers, Monatsh. Math. 176 (2015), no. 1, 31–51. MR 3296202.

J. J. Bravo and F. Luca, On the Diophantine equation $F_n+F_m=2^a$, Quaest. Math. 39 (2016), no. 3, 391–400. MR 3510734.

J. J. Bravo, F. Luca, and K. Yazán, On Pillai's problem with Tribonacci numbers and powers of 2, Bull. Korean Math. Soc. 54 (2017), no. 3, 1069–1080. MR 3659165.

R. D. Carmichael, On the numerical factors of the arithmetic forms $αⁿ±βⁿ$, Ann. of Math. (2) 15 (1913/14), no. 1-4, 30–48 and 49–70. MR 1502458, MR 1502459.

K. C. Chim, I. Pink, and V. Ziegler, On a variant of Pillai's problem II, J. Number Theory 183 (2018), 269–290. MR 3715237.

H. Cohen, Number Theory. Vol. I: Tools and Diophantine Equations, Graduate Texts in Mathematics, 239, Springer, New York, 2007. MR 2312337.

M. Ddamulira, C. A. Gómez, and F. Luca, On a problem of Pillai with $k$-generalized Fibonacci numbers and powers of 2, Monatsh. Math. 187 (2018), no. 4, 635–664. MR 3861322.

M. Ddamulira, F. Luca, and M. Rakotomalala, On a problem of Pillai with Fibonacci numbers and powers of 2, Proc. Indian Acad. Sci. Math. Sci. 127 (2017), no. 3, 411–421. MR 3660342.

S. Díaz Alvarado and F. Luca, Fibonacci numbers which are sums of two repdigits, in Proceedings of the Fourteenth International Conference on Fibonacci Numbers and Their Applications, 97–108, Aportaciones Mat. Investig., 20, Soc. Mat. Mexicana, México, 2011. MR 3243271.

G. P. B. Dresden and Z. Du, A simplified Binet formula for $k$-generalized Fibonacci numbers, J. Integer Seq. 17 (2014), no. 4, Article 14.4.7, 9 pp. MR 3181762.

F. Erduvan and R. Keskin, Repdigits as products of two Fibonacci or Lucas numbers, Proc. Indian Acad. Sci. Math. Sci. 130 (2020), no. 1, Paper No. 28, 14 pp. MR 4079185.

G. Everest, A. Van der Poorten, I. Shparlinski, and T. Ward, Recurrence Sequences, Mathematical Surveys and Monographs, 104, American Mathematical Society, Providence, RI, 2003. MR 1990179.

B. Faye and F. Luca, Pell and Pell-Lucas numbers with only one distinct digit, Ann. Math. Inform. 45 (2015), 55–60. MR 3438812.

C. A. Gómez and F. Luca, Power of two-classes in $k$-generalized Fibonacci sequences, Rev. Colombiana Mat. 48 (2014), no. 2, 219–234. MR 3291720.

C. A. Gómez and F. Luca, On the distribution of the roots of polynomial $z^k-z^{k-1}- ··· -z-1$, Comment. Math. Univ. Carolin. 62 (2021), no. 3, 291–296. MR 4331283.

C. A. Gómez Ruiz and F. Luca, On the largest prime factor of the ratio of two generalized Fibonacci numbers, J. Number Theory 152 (2015), 182–203. MR 3319060.

C. A. Gómez Ruiz and F. Luca, On prime factors of the sum of two $k$-Fibonacci numbers, Int. J. Number Theory 14 (2018), no. 4, 1171–1195. MR 3801090.

C. A. Gómez Ruiz and F. Luca, On the zero-multiplicity of a fifth-order linear recurrence, Int. J. Number Theory 15 (2019), no. 3, 585–595. MR 3925754.

A. Herschfeld, The equation $2^x-3^y=d$ (Abstract), Bull. Amer. Math. Soc. 41 (1935), 631 MR 1563159.

A. Herschfeld, The equation $2^x-3^y=d$, Bull. Amer. Math. Soc. 42 (1936), no. 4, 231–234. MR 1563276.

F. T. Howard and C. Cooper, Some identities for $r$-Fibonacci numbers, Fibonacci Quart. 49 (2011), no. 3, 231–242. MR 2833327.

L. K. Hua and Y. Wang, Applications of Number Theory to Numerical Analysis, Springer-Verlag, Berlin-New York; Kexue Chubanshe (Science Press), Beijing, 1981. MR 0617192.

E. Kiliç, The Binet formula, sums and representations of generalized Fibonacci $p$-numbers, European J. Combin. 29 (2008), no. 3, 701–711. MR 2397350.

E. Kiliç, On the usual Fibonacci and generalized order-$k$ Pell numbers, Ars Combin. 88 (2008), 33–45. MR 2426404.

E. Kiliç and D. Taşci, The generalized Binet formula, representation and sums of the generalized order-$k$ Pell numbers, Taiwanese J. Math. 10 (2006), no. 6, 1661–1670. MR 2275152.

T. Koshy, Fibonacci and Lucas Numbers with Applications, Pure and Applied Mathematics (New York), Wiley-Interscience, New York, 2001. MR 1855020.

F. Luca, Fibonacci and Lucas numbers with only one distinct digit, Portugal. Math. 57 (2000), no. 2, 243–254. MR 1759818.

F. Luca, B. V. Normenyo, and A. Togbé, Repdigits as sums of four Pell numbers, Bol. Soc. Mat. Mex. (3) 25 (2019), no. 2, 249–266. MR 3964309.

D. Marques, The proof of a conjecture concerning the intersection of $k$-generalized Fibonacci sequences, Bull. Braz. Math. Soc. (N.S.) 44 (2013), no. 3, 455–468. MR 3124745.

D. Marques, On $k$-generalized Fibonacci numbers with only one distinct digit, Util. Math. 98 (2015), 23–31. MR 3410879.

D. Marques and A. Togbé, On repdigits as product of consecutive Fibonacci numbers, Rend. Istit. Mat. Univ. Trieste 44 (2012), 393–397. MR 3019569.

M. Mignotte, Intersection des images de certaines suites récurrentes linéaires, Theoret. Comput. Sci. 7 (1978), no. 1, 117–122. MR 0498356.

M. Mignotte, Sur les conjugués des nombres de Pisot, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), no. 2, 21. MR 0740081.

P. Mihăilescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math. 572 (2004), 167–195. MR 2076124.

E. P. Miles, Jr., Generalized Fibonacci numbers and associated matrices, Amer. Math. Monthly 67 (1960), 745–752. MR 0123521.

M. D. Miller, Mathematical Notes: On Generalized Fibonacci Numbers, Amer. Math. Monthly 78 (1971), no. 10, 1108–1109. MR 1536552.

L. Murata and C. Pomerance, On the largest prime factor of a Mersenne number, in Number Theory, 209–218, CRM Proc. Lecture Notes, 36, Amer. Math. Soc., Providence, RI, 2004, MR 2076597.

R. Murty and S. Wong, The $ABC$ conjecture and prime divisors of the Lucas and Lehmer sequences, in Number Theory for the Millennium, III (Urbana, IL, 2000), 43–54, A K Peters, Natick, MA, 2002, MR 1956267.

T. D. Noe and J. Vos Post, Primes in Fibonacci $n$-step and Lucas $n$-step sequences, J. Integer Seq. 8 (2005), no. 4, Article 05.4.4, 12 pp. MR 2165333.

B. V. Normenyo, F. Luca, and A. Togbé, Repdigits as sums of three Pell numbers, Period. Math. Hungar. 77 (2018), no. 2, 318–328. MR 3866634.

S. S. Pillai, On $a^{x}-b^{y} = c$, J. Indian Math. Soc. 2 (1936), 119–122.

S. S. Pillai, A correction to the paper On $a^x - b^y = c$, J. Indian Math. Soc. 2 (1937), 215.

I. Pink and V. Ziegler, Effective resolution of Diophantine equations of the form $u_n+u_m=w p_1^{z_1}· · · p_s^{z_s}$, Monatsh. Math. 185 (2018), no. 1, 103–131. MR 3745704.

A. Schinzel, On primitive prime factors of $a^n-b^n$, Proc. Cambridge Philos. Soc. 58 (1962), 555–562. MR 0143728.

C. L. Stewart, On divisors of Lucas and Lehmer numbers, Acta Math. 211 (2013), no. 2, 291–314. MR 3143892.

R. J. Stroeker and R. Tijdeman, Diophantine equations, in Computational Methods in Number Theory, Part II, 321–369, Math. Centre Tracts, 155, Math. Centrum, Amsterdam, 1982. MR 0702521.

D. A. Wolfram, Solving generalized Fibonacci recurrences, Fibonacci Quart. 36 (1998), no. 2, 129–145. MR 1622060.

Downloads

Published

2023-08-10