Two-weighted estimates of the multilinear fractional integral operator between weighted Lebesgue and Lipschitz spaces with optimal parameters

Authors

  • Fabio Berra CONICET and Departamento de Matem´atica (FIQ-UNL), Santa Fe, Argentina
  • Gladis Pradolini CONICET and Departamento de Matem´atica (FIQ-UNL), Santa Fe, Argentina
  • Wilfredo Ramos CONICET and Departamento de Matem´atica (FaCENA-UNNE), Corrientes, Argentina

DOI:

https://doi.org/10.33044/revuma.4346

Abstract

Given an $m$-tuple of weights $\vec{v}=(v_1,\dots,v_m)$, we characterize the classes of pairs $(w,\vec{v})$ involved in the boundedness properties of the multilinear fractional integral operator from $\prod_{i=1}^mL^{p_i}\left(v_i^{p_i}\right)$ into suitable Lipschitz spaces associated to a parameter $\delta$, $\mathcal{L}_w(\delta)$. Our results generalize some previous estimates not only for the linear case but also for the unweighted problem in the multilinear context. We emphasize the study related to the range of the parameters involved in the problem described above, which is optimal in the sense that they become trivial outside of the region obtained. We also exhibit nontrivial examples of pairs of weights in this region.

Downloads

Download data is not yet available.

References

H. Aimar, S. Hartzstein, B. Iaffei, and B. Viviani, The Riesz potential as a multilinear operator into general $BMO_β$ spaces, J. Math. Sci. (N.Y.) 173 no. 6 (2011), 643–655.  DOI  MR  Zbl

F. Berra, G. Pradolini, and W. Ramos, Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spaces, Positivity 27 no. 2 (2023), Paper No. 22, 35 pp.  DOI  MR  Zbl

L. Grafakos, On multilinear fractional integrals, Studia Math. 102 no. 1 (1992), 49–56.  DOI  MR  Zbl

L. Grafakos and N. Kalton, Some remarks on multilinear maps and interpolation, Math. Ann. 319 no. 1 (2001), 151–180.  DOI  MR  Zbl

E. Harboure, O. Salinas, and B. Viviani, Boundedness of the fractional integral on weighted Lebesgue and Lipschitz spaces, Trans. Amer. Math. Soc. 349 no. 1 (1997), 235–255.  DOI  MR  Zbl

C. E. Kenig and E. M. Stein, Multilinear estimates and fractional integration, Math. Res. Lett. 6 no. 1 (1999), 1–15.  DOI  MR  Zbl

K. Moen, Weighted inequalities for multilinear fractional integral operators, Collect. Math. 60 no. 2 (2009), 213–238.  DOI  MR  Zbl

B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226.  DOI  MR  Zbl

B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261–274.  DOI  MR  Zbl

B. Muckenhoupt and R. L. Wheeden, Weighted bounded mean oscillation and the Hilbert transform, Studia Math. 54 no. 3 (1975/76), 221–237.  DOI  MR  Zbl

G. Pradolini, A class of pairs of weights related to the boundedness of the fractional integral operator between $L^p$ and Lipschitz spaces, Comment. Math. Univ. Carolin. 42 no. 1 (2001), 133–152.  MR  Zbl Available at https://eudml.org/doc/248807.

G. Pradolini, Two-weighted norm inequalities for the fractional integral operator between $L^p$ and Lipschitz spaces, Comment. Math. (Prace Mat.) 41 (2001), 147–169.  MR  Zbl

G. Pradolini, Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators, J. Math. Anal. Appl. 367 no. 2 (2010), 640–656.  DOI  MR  Zbl

G. Pradolini and J. Recchi, On optimal parameters involved with two-weighted estimates of commutators of singular and fractional operators with Lipschitz symbols, Czechoslovak Math. J. 73 no. 3 (2023), 733–754.  DOI  MR  Zbl

Downloads

Published

2023-09-21