Mixed weak type inequalities for the fractional maximal operator

Authors

  • María Lorente Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
  • Francisco Martín-Reyes Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain

DOI:

https://doi.org/10.33044/revuma.4354

Abstract

Let $0\leq \alpha < n$, $q=\frac{n}{n-\alpha}$. We establish the mixed weak type inequality \begin{equation*} \sup_{\lambda > 0}\lambda^q \int_{\{x\in\mathbb{R}^n:M_{\alpha}f(x) > \lambda v(x) \}}u^qv^q\leq C\left(\int_{\mathbb{R}^n}|f|u \right)^q\, \end{equation*} for the fractional maximal operator \[ M_\alpha f(x)=\sup_{h > 0}|B(x,h)|^{\alpha/n-1}\int_{B(x,h)} |f| \] under the following assumptions: (a) $u^q$ belongs to the Muckenhoupt $A_1$ class, (b) $v$ is essentially constant over dyadic annuli, and (c) $(\lambda v)^q$ satisfies a certain condition $C_p(\gamma)$ for all $\lambda > 0$. The last condition is fulfilled by any Muckenhoupt weight but it is also satisfied by some non Muckenhoupt weights. Our approach is based on the study of the same kind of inequalities for the local fractional maximal operator, a Hardy type operator and its adjoint.

Downloads

Download data is not yet available.

References

K. F. Andersen and B. Muckenhoupt, Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions, Studia Math. 72 no. 1 (1982), 9–26.  DOI  MR  Zbl

F. Berra, Mixed weak estimates of Sawyer type for generalized maximal operators, Proc. Amer. Math. Soc. 147 no. 10 (2019), 4259–4273.  DOI  MR  Zbl

F. Berra, M. Carena, and G. Pradolini, Mixed weak estimates of Sawyer type for commutators of generalized singular integrals and related operators, Michigan Math. J. 68 no. 3 (2019), 527–564.  DOI  MR  Zbl

F. Berra, M. Carena, and G. Pradolini, Mixed weak estimates of Sawyer type for fractional integrals and some related operators, J. Math. Anal. Appl. 479 no. 2 (2019), 1490–1505.  DOI  MR  Zbl

M. Caldarelli and I. P. Rivera-Ríos, A sparse approach to mixed weak type inequalities, Math. Z. 296 no. 1-2 (2020), 787–812.  DOI  MR  Zbl

D. Cruz-Uribe, J. M. Martell, and C. Pérez, Weighted weak-type inequalities and a conjecture of Sawyer, Int. Math. Res. Not. no. 30 (2005), 1849–1871.  DOI  MR  Zbl

P. Drábek, H. P. Heinig, and A. Kufner, Higher-dimensional Hardy inequality, in General Inequalities, 7 (Oberwolfach, 1995), Internat. Ser. Numer. Math. 123, Birkhäuser, Basel, 1997, pp. 3–16.  MR  Zbl

D. E. Edmunds, V. Kokilashvili, and A. Meskhi, Bounded and Compact Integral Operators, Mathematics and its Applications 543, Kluwer Academic Publishers, Dordrecht, 2002.  DOI  MR  Zbl

J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies 116, North-Holland, Amsterdam, 1985.  MR  Zbl

K. Li, S. Ombrosi, and C. Pérez, Proof of an extension of E. Sawyer's conjecture about weighted mixed weak-type estimates, Math. Ann. 374 no. 1-2 (2019), 907–929.  DOI  MR  Zbl

K. Li, S. J. Ombrosi, and M. B. Picardi, Weighted mixed weak-type inequalities for multilinear operators, Studia Math. 244 no. 2 (2019), 203–215.  DOI  MR  Zbl

M. Lorente and F. J. Martín-Reyes, Some mixed weak type inequalities, J. Math. Inequal. 15 no. 2 (2021), 811–826.  DOI  MR  Zbl

F. J. Martín-Reyes, New proofs of weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Proc. Amer. Math. Soc. 117 no. 3 (1993), 691–698.  DOI  MR  Zbl

F. J. Martín-Reyes, P. Ortega Salvador, and M. D. Sarrión Gavilán, Boundedness of operators of Hardy type in $λ^{p,q}$ spaces and weighted mixed inequalities for singular integral operators, Proc. Roy. Soc. Edinburgh Sect. A 127 no. 1 (1997), 157–170.  DOI  MR  Zbl

F. J. Martín-Reyes and S. J. Ombrosi, Mixed weak type inequalities for one-sided operators, Q. J. Math. 60 no. 1 (2009), 63–73.  DOI  MR  Zbl

B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226.  DOI  MR  Zbl

B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261–274.  DOI  MR  Zbl

B. Muckenhoupt and R. L. Wheeden, Some weighted weak-type inequalities for the Hardy-Littlewood maximal function and the Hilbert transform, Indiana Univ. Math. J. 26 no. 5 (1977), 801–816.  DOI  MR  Zbl

S. Ombrosi and C. Pérez, Mixed weak type estimates: examples and counterexamples related to a problem of E. Sawyer, Colloq. Math. 145 no. 2 (2016), 259–272.  DOI  MR  Zbl

S. Ombrosi, C. Pérez, and J. Recchi, Quantitative weighted mixed weak-type inequalities for classical operators, Indiana Univ. Math. J. 65 no. 2 (2016), 615–640.  DOI  MR  Zbl

S. Ombrosi and I. P. Rivera-Ríos, Endpoint mixed weak type extrapolation, 2023. arXiv 2301.10648 [math.CA].

C. Pérez and E. Roure-Perdices, Sawyer-type inequalities for Lorentz spaces, Math. Ann. 383 no. 1-2 (2022), 493–528.  DOI  MR  Zbl

B. Picardi, Weighted mixed weak-type inequalities for multilinear fractional operators, 2018. arXiv 1810.06680 [math.CA].

E. Sawyer, A weighted weak type inequality for the maximal function, Proc. Amer. Math. Soc. 93 no. 4 (1985), 610–614.  DOI  MR  Zbl

E. Sawyer, Weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Trans. Amer. Math. Soc. 297 no. 1 (1986), 53–61.  DOI  MR  Zbl

E. T. Sawyer, Weighted norm inequalities for fractional maximal operators, in 1980 Seminar on Harmonic Analysis (Montreal, Que., 1980), CMS Conf. Proc. 1, Amer. Math. Soc., Providence, RI, 1981, pp. 283–309.  MR  Zbl

R. L. Wheeden, A characterization of some weighted norm inequalities for the fractional maximal function, Studia Math. 107 no. 3 (1993), 257–272.  DOI  MR  Zbl

Downloads

Published

2023-09-21