Characterizations of local $A_{\infty}$ weights and applications to local singular integrals

Authors

  • Federico Campos IMAL (UNL-CONICET); FIQ (UNL), Colectora Ruta Nac. 168, Paraje El Pozo, 3000 Santa Fe, Argentina
  • Oscar Salinas IMAL (UNL-CONICET); FIQ (UNL), Colectora Ruta Nac. 168, Paraje El Pozo, 3000 Santa Fe, Argentina
  • Beatriz Viviani IMAL (UNL-CONICET); FIQ (UNL), Colectora Ruta Nac. 168, Paraje El Pozo, 3000 Santa Fe, Argentina

DOI:

https://doi.org/10.33044/revuma.4355

Abstract

In a general geometric setting, we prove different characterizations of a local version of Muckenhoupt $A_{\infty}$ weights. As an application, we obtain conclusions about the relationship between this class and the one-weight boundedness of local singular integrals from $L^{\infty}$ to BMO.

Downloads

Download data is not yet available.

References

H. Aimar, Singular integrals and approximate identities on spaces of homogeneous type, Trans. Amer. Math. Soc. 292 no. 1 (1985), 135–153.  DOI  MR  Zbl

H. Aimar and R. A. Macías, Weighted norm inequalities for the Hardy-Littlewood maximal operator on spaces of homogeneous type, Proc. Amer. Math. Soc. 91 no. 2 (1984), 213–216.  DOI  MR  Zbl

R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250.  DOI  MR  Zbl

N. Fujii, Weighted bounded mean oscillation and singular integrals, Math. Japon. 22 no. 5 (1977/78), 529–534.  MR  Zbl

E. Harboure, O. Salinas, and B. Viviani, Boundedness of the fractional integral on weighted Lebesgue and Lipschitz spaces, Trans. Amer. Math. Soc. 349 no. 1 (1997), 235–255.  DOI  MR  Zbl

E. Harboure, O. Salinas, and B. Viviani, Local maximal function and weights in a general setting, Math. Ann. 358 no. 3-4 (2014), 609–628.  DOI  MR  Zbl

E. Harboure, O. Salinas, and B. Viviani, Local fractional and singular integrals on open subsets, J. Anal. Math. 138 no. 1 (2019), 301–324.  DOI  MR  Zbl

T. Hytönen, C. Pérez, and E. Rela, Sharp reverse Hölder property for $A_∞$ weights on spaces of homogeneous type, J. Funct. Anal. 263 no. 12 (2012), 3883–3899.  DOI  MR  Zbl

R. A. Macías and C. Segovia, A well behaved quasi-distance on spaces of homogeneous type, Trab. Mat. Inst. Argentino Mat. 32 (1981), 1–18.

B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226.  DOI  MR  Zbl

A. Nowak and K. Stempak, Weighted estimates for the Hankel transform transplantation operator, Tohoku Math. J. (2) 58 no. 2 (2006), 277–301.  DOI  MR  Zbl

Downloads

Published

2023-09-21