A tribute to Pola Harboure: Isoperimetric inequalities and the HMS

Authors

  • Carlos Pérez Department of Mathematics, University of the Basque Country, Ikerbasque and BCAM, Bilbao, Spain
  • Ezequiel Rela Departamento de Matemática, Universidad de Buenos Aires, and IMAS-CONICET, Buenos Aires, Argentina

DOI:

https://doi.org/10.33044/revuma.4356

Abstract

We give a simpler proof of the Gagliardo estimate with a measure obtained by Franchi, Pérez, and Wheeden [Proc. London Math. Soc. (3) 80 no. 3 (2000), 665–689], and improved by Pérez and Rela [Trans. Amer. Math. Soc. 372 no. 9 (2019), 6087–6133]. This result will be further improved using fractional Poincaré type inequalities with the extra bonus of Bourgain–Brezis–Mironescu as done by Hurri-Syrjänen, Martínez-Perales, Pérez, and Vähäkangas [Internat. Math. Res. Notices (2022), rnac246] with a new argument. This will be used with the HMS extrapolation theorem to get $L^p$ type result.

Downloads

Download data is not yet available.

References

D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Grundlehren der mathematischen Wissenschaften 314, Springer-Verlag, Berlin, 1996.  DOI  MR

J. Bourgain, H. Brezis, and P. Mironescu, Limiting embedding theorems for $W^{s,p}$ when $s↑1$ and applications, J. Anal. Math. 87 (2002), 77–101.  DOI  MR  Zbl

M. E. Cejas, C. Mosquera, C. Pérez, and E. Rela, Self-improving Poincaré-Sobolev type functionals in product spaces, J. Anal. Math. 149 no. 1 (2023), 1–48.  DOI  MR  Zbl

S.-K. Chua, Embedding and compact embedding for weighted and abstract Sobolev spaces, Pacific J. Math. 303 no. 2 (2019), 519–568.  DOI  MR  Zbl

R. R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc. 79 no. 2 (1980), 249–254.  DOI  MR  Zbl

H. Cong, K. Moen, and C. Pérez, A homage to Guido Weiss and his leadership of the Saint Louis team: Commutators of singular integrals and Sobolev inequalities, to appear in a special volume by Birkhäuser/Springer dedicated to the memory of Guido L. Weiss. arXiv 2307.15594 [math.CA].

H. Cong, K. Moen, and C. Pérez, Pointwise estimates for rough operators with applications to Sobolev inequalities, to appear in Journal d'Analyse Mathématique. arXiv 2307.10417 [math.CA].

D. V. Cruz-Uribe, J. M. Martell, and C. Pérez, Weights, extrapolation and the theory of Rubio de Francia, Operator Theory: Advances and Applications 215, Birkhäuser/Springer, Basel, 2011.  DOI  MR  Zbl

G. David and S. Semmes, Strong $A_∞$ weights, Sobolev inequalities and quasiconformal mappings, in Analysis and Partial Differential Equations, Lecture Notes in Pure and Appl. Math. 122, Dekker, New York, 1990, pp. 101–111.  MR  Zbl

J. Duoandikoetxea, Fourier Analysis, Graduate Studies in Mathematics 29, American Mathematical Society, Providence, RI, 2001.  DOI  MR

B. Dyda, L. Ihnatsyeva, and A. V. Vähäkangas, On improved fractional Sobolev-Poincaré inequalities, Ark. Mat. 54 no. 2 (2016), 437–454.  DOI  MR  Zbl

H. Federer and W. H. Fleming, Normal and integral currents, Ann. of Math. (2) 72 (1960), 458–520.  DOI  MR

C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115.  DOI  MR  Zbl

B. Franchi and P. Hajłasz, How to get rid of one of the weights in a two-weight Poincaré inequality?, Ann. Polon. Math. 74 (2000), 97–103.  DOI  MR  Zbl

B. Franchi, G. Lu, and R. L. Wheeden, A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type, Internat. Math. Res. Notices no. 1 (1996), 1–14.  DOI  MR  Zbl

B. Franchi, C. Pérez, and R. L. Wheeden, Sharp geometric Poincaré inequalities for vector fields and non-doubling measures, Proc. London Math. Soc. (3) 80 no. 3 (2000), 665–689.  DOI  MR  Zbl

E. Gagliardo, Proprietà di alcune classi di funzioni in più variabili, Ricerche Mat. 7 (1958), 102–137.  MR  Zbl

J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies 116, North-Holland, Amsterdam, 1985.  MR  Zbl

P. Hajłasz, Sobolev inequalities, truncation method, and John domains, in Papers on Analysis, Rep. Univ. Jyväskylä Dep. Math. Stat. 83, Univ. Jyväskylä, Jyväskylä, 2001, pp. 109–126.  MR  Zbl

E. Harboure, R. Macías, and C. Segovia, An extrapolation theorem for pairs of weights, Rev. Un. Mat. Argentina 40 no. 3-4 (1997), 37–48.  MR  Zbl

E. Harboure, R. A. Macías, and C. Segovia, Extrapolation results for classes of weights, Amer. J. Math. 110 no. 3 (1988), 383–397.  DOI  MR  Zbl

R. Hurri-Syrjänen, J. C. Martínez-Perales, C. Pérez, and A. V. Vähäkangas, On the BBM-phenomenon in fractional Poincaré–Sobolev inequalities with weights, Internat. Math. Res. Notices (2022), rnac246.  DOI

R. Hurri-Syrjänen, J. C. Martínez-Perales, C. Pérez, and A. V. Vähäkangas, On the weighted inequality between the Gagliardo and Sobolev seminorms, 2023. arXiv 2302.14029 [math.CA].

J. Kinnunen, J. Lehrbäck, and A. Vähäkangas, Maximal Function Methods for Sobolev Spaces, Mathematical Surveys and Monographs 257, American Mathematical Society, Providence, RI, 2021.  DOI  MR  Zbl

M. T. Lacey, K. Moen, C. Pérez, and R. H. Torres, Sharp weighted bounds for fractional integral operators, J. Funct. Anal. 259 no. 5 (2010), 1073–1097.  DOI  MR  Zbl

N. S. Landkof, Foundations of Modern Potential Theory, Die Grundlehren der mathematischen Wissenschaften 180, Springer-Verlag, New York-Heidelberg, 1972.  MR  Zbl

V. G. Maz'ya, Sobolev Spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985.  DOI  MR  Zbl

B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261–274.  DOI  MR  Zbl

K. Myyryläinen, C. Pérez, and J. Weigt, Weighted fractional Poincaré inequalities via isoperimetric inequalities, 2023. arXiv 2304.02681 [math.CA].

R. Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc. 84 no. 6 (1978), 1182–1238.  DOI  MR  Zbl

J. M. Perales and C. Pérez, Remarks on vector-valued Gagliardo and Poincaré–Sobolev-type inequalities with weights, in Potentials and Partial Differential Equations: The Legacy of David R. Adams, De Gruyter, Berlin, Boston, 2023, pp. 265–286.  DOI

C. Pérez and E. Rela, Degenerate Poincaré-Sobolev inequalities, Trans. Amer. Math. Soc. 372 no. 9 (2019), 6087–6133.  DOI  MR  Zbl

J. Recchi, Mixed $A_1-A_∞$ bounds for fractional integrals, J. Math. Anal. Appl. 403 no. 1 (2013), 283–296.  DOI  MR  Zbl

L. Saloff-Coste, Aspects of Sobolev-type Inequalities, London Mathematical Society Lecture Note Series 289, Cambridge University Press, Cambridge, 2002.  MR  Zbl

G. Talenti, Inequalities in rearrangement invariant function spaces, in Nonlinear Analysis, Function Spaces and Applications, Vol. 5 (Prague, 1994), Prometheus, Prague, 1994, pp. 177–230.  MR  Zbl

B. O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, Lecture Notes in Mathematics 1736, Springer-Verlag, Berlin, 2000.  DOI  MR  Zbl

W. P. Ziemer, Weakly Differentiable Functions, Graduate Texts in Mathematics 120, Springer-Verlag, New York, 1989.  DOI  MR  Zbl

Downloads

Published

2023-09-21