A tribute to Pola Harboure: Isoperimetric inequalities and the HMS
DOI:
https://doi.org/10.33044/revuma.4356Abstract
We give a simpler proof of the Gagliardo estimate with a measure obtained by Franchi, Pérez, and Wheeden [Proc. London Math. Soc. (3) 80 no. 3 (2000), 665–689], and improved by Pérez and Rela [Trans. Amer. Math. Soc. 372 no. 9 (2019), 6087–6133]. This result will be further improved using fractional Poincaré type inequalities with the extra bonus of Bourgain–Brezis–Mironescu as done by Hurri-Syrjänen, Martínez-Perales, Pérez, and Vähäkangas [Internat. Math. Res. Notices (2022), rnac246] with a new argument. This will be used with the HMS extrapolation theorem to get $L^p$ type result.
Downloads
References
D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Grundlehren der mathematischen Wissenschaften 314, Springer-Verlag, Berlin, 1996. DOI MR
J. Bourgain, H. Brezis, and P. Mironescu, Limiting embedding theorems for $W^{s,p}$ when $s↑1$ and applications, J. Anal. Math. 87 (2002), 77–101. DOI MR Zbl
M. E. Cejas, C. Mosquera, C. Pérez, and E. Rela, Self-improving Poincaré-Sobolev type functionals in product spaces, J. Anal. Math. 149 no. 1 (2023), 1–48. DOI MR Zbl
S.-K. Chua, Embedding and compact embedding for weighted and abstract Sobolev spaces, Pacific J. Math. 303 no. 2 (2019), 519–568. DOI MR Zbl
R. R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc. 79 no. 2 (1980), 249–254. DOI MR Zbl
H. Cong, K. Moen, and C. Pérez, A homage to Guido Weiss and his leadership of the Saint Louis team: Commutators of singular integrals and Sobolev inequalities, to appear in a special volume by Birkhäuser/Springer dedicated to the memory of Guido L. Weiss. arXiv 2307.15594 [math.CA].
H. Cong, K. Moen, and C. Pérez, Pointwise estimates for rough operators with applications to Sobolev inequalities, to appear in Journal d'Analyse Mathématique. arXiv 2307.10417 [math.CA].
D. V. Cruz-Uribe, J. M. Martell, and C. Pérez, Weights, extrapolation and the theory of Rubio de Francia, Operator Theory: Advances and Applications 215, Birkhäuser/Springer, Basel, 2011. DOI MR Zbl
G. David and S. Semmes, Strong $A_∞$ weights, Sobolev inequalities and quasiconformal mappings, in Analysis and Partial Differential Equations, Lecture Notes in Pure and Appl. Math. 122, Dekker, New York, 1990, pp. 101–111. MR Zbl
J. Duoandikoetxea, Fourier Analysis, Graduate Studies in Mathematics 29, American Mathematical Society, Providence, RI, 2001. DOI MR
B. Dyda, L. Ihnatsyeva, and A. V. Vähäkangas, On improved fractional Sobolev-Poincaré inequalities, Ark. Mat. 54 no. 2 (2016), 437–454. DOI MR Zbl
H. Federer and W. H. Fleming, Normal and integral currents, Ann. of Math. (2) 72 (1960), 458–520. DOI MR
C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115. DOI MR Zbl
B. Franchi and P. Hajłasz, How to get rid of one of the weights in a two-weight Poincaré inequality?, Ann. Polon. Math. 74 (2000), 97–103. DOI MR Zbl
B. Franchi, G. Lu, and R. L. Wheeden, A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type, Internat. Math. Res. Notices no. 1 (1996), 1–14. DOI MR Zbl
B. Franchi, C. Pérez, and R. L. Wheeden, Sharp geometric Poincaré inequalities for vector fields and non-doubling measures, Proc. London Math. Soc. (3) 80 no. 3 (2000), 665–689. DOI MR Zbl
E. Gagliardo, Proprietà di alcune classi di funzioni in più variabili, Ricerche Mat. 7 (1958), 102–137. MR Zbl
J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies 116, North-Holland, Amsterdam, 1985. MR Zbl
P. Hajłasz, Sobolev inequalities, truncation method, and John domains, in Papers on Analysis, Rep. Univ. Jyväskylä Dep. Math. Stat. 83, Univ. Jyväskylä, Jyväskylä, 2001, pp. 109–126. MR Zbl
E. Harboure, R. Macías, and C. Segovia, An extrapolation theorem for pairs of weights, Rev. Un. Mat. Argentina 40 no. 3-4 (1997), 37–48. MR Zbl
E. Harboure, R. A. Macías, and C. Segovia, Extrapolation results for classes of weights, Amer. J. Math. 110 no. 3 (1988), 383–397. DOI MR Zbl
R. Hurri-Syrjänen, J. C. Martínez-Perales, C. Pérez, and A. V. Vähäkangas, On the BBM-phenomenon in fractional Poincaré–Sobolev inequalities with weights, Internat. Math. Res. Notices (2022), rnac246. DOI
R. Hurri-Syrjänen, J. C. Martínez-Perales, C. Pérez, and A. V. Vähäkangas, On the weighted inequality between the Gagliardo and Sobolev seminorms, 2023. arXiv 2302.14029 [math.CA].
J. Kinnunen, J. Lehrbäck, and A. Vähäkangas, Maximal Function Methods for Sobolev Spaces, Mathematical Surveys and Monographs 257, American Mathematical Society, Providence, RI, 2021. DOI MR Zbl
M. T. Lacey, K. Moen, C. Pérez, and R. H. Torres, Sharp weighted bounds for fractional integral operators, J. Funct. Anal. 259 no. 5 (2010), 1073–1097. DOI MR Zbl
N. S. Landkof, Foundations of Modern Potential Theory, Die Grundlehren der mathematischen Wissenschaften 180, Springer-Verlag, New York-Heidelberg, 1972. MR Zbl
V. G. Maz'ya, Sobolev Spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. DOI MR Zbl
B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261–274. DOI MR Zbl
K. Myyryläinen, C. Pérez, and J. Weigt, Weighted fractional Poincaré inequalities via isoperimetric inequalities, 2023. arXiv 2304.02681 [math.CA].
R. Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc. 84 no. 6 (1978), 1182–1238. DOI MR Zbl
J. M. Perales and C. Pérez, Remarks on vector-valued Gagliardo and Poincaré–Sobolev-type inequalities with weights, in Potentials and Partial Differential Equations: The Legacy of David R. Adams, De Gruyter, Berlin, Boston, 2023, pp. 265–286. DOI
C. Pérez and E. Rela, Degenerate Poincaré-Sobolev inequalities, Trans. Amer. Math. Soc. 372 no. 9 (2019), 6087–6133. DOI MR Zbl
J. Recchi, Mixed $A_1-A_∞$ bounds for fractional integrals, J. Math. Anal. Appl. 403 no. 1 (2013), 283–296. DOI MR Zbl
L. Saloff-Coste, Aspects of Sobolev-type Inequalities, London Mathematical Society Lecture Note Series 289, Cambridge University Press, Cambridge, 2002. MR Zbl
G. Talenti, Inequalities in rearrangement invariant function spaces, in Nonlinear Analysis, Function Spaces and Applications, Vol. 5 (Prague, 1994), Prometheus, Prague, 1994, pp. 177–230. MR Zbl
B. O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, Lecture Notes in Mathematics 1736, Springer-Verlag, Berlin, 2000. DOI MR Zbl
W. P. Ziemer, Weakly Differentiable Functions, Graduate Texts in Mathematics 120, Springer-Verlag, New York, 1989. DOI MR Zbl
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Carlos Pérez, Ezequiel Rela
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. The Journal may retract the paper after publication if clear evidence is found that the findings are unreliable as a result of misconduct or honest error.