$L^p(\mathbb{R}^n)$-dimension free estimates of the Riesz transforms
DOI:
https://doi.org/10.33044/revuma.4359Abstract
In this note we describe some known results about dimension free boundedness in $L^p(\mathbb{R}^n)$ of the Riesz transforms, for $p$ in the range $1 < p < \infty$.
Downloads
References
N. Asmar, E. Berkson, and T. A. Gillespie, Transference of strong type maximal inequalities by separation-preserving representations, Amer. J. Math. 113 no. 1 (1991), 47–74. DOI MR Zbl
N. Asmar, E. Berkson, and T. A. Gillespie, Transferred bounds for square functions, Houston J. Math. 17 no. 4 (1991), 525–550. MR Zbl
P. Auscher and M. J. Carro, Transference for radial multipliers and dimension free estimates, Trans. Amer. Math. Soc. 342 no. 2 (1994), 575–593. DOI MR Zbl
E. Berkson, A. T. Gillespie, and J. L. Torrea, Vector valued transference, in Proceedings of International Conference on Functional Space Theory and its Applications, Wuhan 2003, Research Information Ltd UK, pp. 1–27.
E. Berkson, T. A. Gillespie, and P. S. Muhly, Generalized analyticity in UMD spaces, Ark. Mat. 27 no. 1 (1989), 1–14. DOI MR Zbl
A. P. Calderón, Ergodic theory and translation-invariant operators, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 349–353. DOI MR Zbl
A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289–309. DOI MR Zbl
R. R. Coifman and G. Weiss, Transference Methods in Analysis, CBMS Regional Conference Series in Mathematics 31, American Mathematical Society, Providence, RI, 1976. MR Zbl
M. Cotlar, A unified theory of Hilbert transforms and ergodic theorems, Rev. Mat. Cuyana 1 (1955), 105–167. MR Zbl
T. Coulhon, D. Müller, and J. Zienkiewicz, About Riesz transforms on the Heisenberg groups, Math. Ann. 305 no. 2 (1996), 369–379. DOI MR Zbl
J. Duoandikoetxea and J. L. Rubio de Francia, Estimations indépendantes de la dimension pour les transformées de Riesz, C. R. Acad. Sci. Paris Sér. I Math. 300 no. 7 (1985), 193–196. MR Zbl
T. A. Gillespie and J. L. Torrea, Weighted ergodic theory and dimension free estimates, Q. J. Math. 54 no. 3 (2003), 257–280. DOI MR Zbl
T. A. Gillespie and J. L. Torrea, Dimension free estimates for the oscillation of Riesz transforms, Israel J. Math. 141 (2004), 125–144. DOI MR Zbl
R. F. Gundy, Some topics in probability and analysis, CBMS Regional Conference Series in Mathematics 70, American Mathematical Society, Providence, RI, 1989. DOI MR Zbl
C. E. Gutiérrez, On the Riesz transforms for Gaussian measures, J. Funct. Anal. 120 no. 1 (1994), 107–134. DOI MR Zbl
E. Harboure, L. de Rosa, C. Segovia, and J. L. Torrea, $L^p$-dimension free boundedness for Riesz transforms associated to Hermite functions, Math. Ann. 328 no. 4 (2004), 653–682. DOI MR Zbl
P. A. Meyer, Transformations de Riesz pour les lois gaussiennes, in Séminaire de probabilités, XVIII, Lecture Notes in Math. 1059, Springer, Berlin, 1984, pp. 179–193. DOI MR Zbl
G. Pisier, Riesz transforms: a simpler analytic proof of P. A. Meyer's inequality, in Séminaire de probabilités, XXII, Lecture Notes in Math. 1321, Springer, Berlin, 1988, pp. 485–501. DOI MR Zbl
M. Riesz, Sur les fonctions conjuguées, Math. Z. 27 no. 1 (1928), 218–244. DOI MR Zbl
L. A. Santaló, Manuel Balanzat, 1912–1994, Rev. Un. Mat. Argentina 39 no. 3-4 (1995), 235–239. MR Zbl
E. M. Stein, Some results in harmonic analysis in $R^{n}$, for $n→∞$, Bull. Amer. Math. Soc. (N.S.) 9 no. 1 (1983), 71–73. DOI MR Zbl
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series 30, Princeton University Press, Princeton, NJ, 1970. MR Zbl
E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Annals of Mathematics Studies 63, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1970. MR Zbl
S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Mathematical Notes 42, Princeton University Press, Princeton, NJ, 1993. MR Zbl
UBApsicologia, Volver a Enseñar V – Luis Santaló (1995), video, 2015. Available at https://www.youtube.com/watch?v=D1bKNxOdEFc.
A. Zygmund, Trigonometric series: Vols. I, II, third ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2002. MR Zbl
Downloads
Published
Issue
Section
License
Copyright (c) 2023 José Luis Torrea
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. The Journal may retract the paper after publication if clear evidence is found that the findings are unreliable as a result of misconduct or honest error.