$L^p(\mathbb{R}^n)$-dimension free estimates of the Riesz transforms

Authors

  • José Luis Torrea Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain

DOI:

https://doi.org/10.33044/revuma.4359

Abstract

In this note we describe some known results about dimension free boundedness in $L^p(\mathbb{R}^n)$ of the Riesz transforms, for $p$ in the range $1 < p < \infty$.

Downloads

Download data is not yet available.

References

N. Asmar, E. Berkson, and T. A. Gillespie, Transference of strong type maximal inequalities by separation-preserving representations, Amer. J. Math. 113 no. 1 (1991), 47–74.  DOI  MR  Zbl

N. Asmar, E. Berkson, and T. A. Gillespie, Transferred bounds for square functions, Houston J. Math. 17 no. 4 (1991), 525–550.  MR  Zbl

P. Auscher and M. J. Carro, Transference for radial multipliers and dimension free estimates, Trans. Amer. Math. Soc. 342 no. 2 (1994), 575–593.  DOI  MR  Zbl

E. Berkson, A. T. Gillespie, and J. L. Torrea, Vector valued transference, in Proceedings of International Conference on Functional Space Theory and its Applications, Wuhan 2003, Research Information Ltd UK, pp. 1–27.

E. Berkson, T. A. Gillespie, and P. S. Muhly, Generalized analyticity in UMD spaces, Ark. Mat. 27 no. 1 (1989), 1–14.  DOI  MR  Zbl

A. P. Calderón, Ergodic theory and translation-invariant operators, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 349–353.  DOI  MR  Zbl

A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289–309.  DOI  MR  Zbl

R. R. Coifman and G. Weiss, Transference Methods in Analysis, CBMS Regional Conference Series in Mathematics 31, American Mathematical Society, Providence, RI, 1976.  MR  Zbl

M. Cotlar, A unified theory of Hilbert transforms and ergodic theorems, Rev. Mat. Cuyana 1 (1955), 105–167.  MR  Zbl

T. Coulhon, D. Müller, and J. Zienkiewicz, About Riesz transforms on the Heisenberg groups, Math. Ann. 305 no. 2 (1996), 369–379.  DOI  MR  Zbl

J. Duoandikoetxea and J. L. Rubio de Francia, Estimations indépendantes de la dimension pour les transformées de Riesz, C. R. Acad. Sci. Paris Sér. I Math. 300 no. 7 (1985), 193–196.  MR  Zbl

T. A. Gillespie and J. L. Torrea, Weighted ergodic theory and dimension free estimates, Q. J. Math. 54 no. 3 (2003), 257–280.  DOI  MR  Zbl

T. A. Gillespie and J. L. Torrea, Dimension free estimates for the oscillation of Riesz transforms, Israel J. Math. 141 (2004), 125–144.  DOI  MR  Zbl

R. F. Gundy, Some topics in probability and analysis, CBMS Regional Conference Series in Mathematics 70, American Mathematical Society, Providence, RI, 1989.  DOI  MR  Zbl

C. E. Gutiérrez, On the Riesz transforms for Gaussian measures, J. Funct. Anal. 120 no. 1 (1994), 107–134.  DOI  MR  Zbl

E. Harboure, L. de Rosa, C. Segovia, and J. L. Torrea, $L^p$-dimension free boundedness for Riesz transforms associated to Hermite functions, Math. Ann. 328 no. 4 (2004), 653–682.  DOI  MR  Zbl

P. A. Meyer, Transformations de Riesz pour les lois gaussiennes, in Séminaire de probabilités, XVIII, Lecture Notes in Math. 1059, Springer, Berlin, 1984, pp. 179–193.  DOI  MR  Zbl

G. Pisier, Riesz transforms: a simpler analytic proof of P. A. Meyer's inequality, in Séminaire de probabilités, XXII, Lecture Notes in Math. 1321, Springer, Berlin, 1988, pp. 485–501.  DOI  MR  Zbl

M. Riesz, Sur les fonctions conjuguées, Math. Z. 27 no. 1 (1928), 218–244.  DOI  MR  Zbl

L. A. Santaló, Manuel Balanzat, 1912–1994, Rev. Un. Mat. Argentina 39 no. 3-4 (1995), 235–239.  MR  Zbl

E. M. Stein, Some results in harmonic analysis in $R^{n}$, for $n→∞$, Bull. Amer. Math. Soc. (N.S.) 9 no. 1 (1983), 71–73.  DOI  MR  Zbl

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series 30, Princeton University Press, Princeton, NJ, 1970.  MR  Zbl

E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Annals of Mathematics Studies 63, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1970.  MR  Zbl

S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Mathematical Notes 42, Princeton University Press, Princeton, NJ, 1993.  MR  Zbl

UBApsicologia, Volver a Enseñar V – Luis Santaló (1995), video, 2015. Available at https://www.youtube.com/watch?v=D1bKNxOdEFc.

A. Zygmund, Trigonometric series: Vols. I, II, third ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2002.  MR  Zbl

Downloads

Published

2023-09-21