Hermite Besov and Triebel–Lizorkin spaces and applications

Authors

  • Fu Ken Ly School of Mathematics and Statistics, The Learning Hub, The University of Sydney, NSW 2006, Australia
  • Virginia Naibo Department of Mathematics, Kansas State University. 138 Cardwell Hall, 1228 N. 17th Street, Manhattan, KS 66506, USA

DOI:

https://doi.org/10.33044/revuma.4360

Abstract

We present an overview of Besov and Triebel–Lizorkin spaces in the Hermite setting and applications on boundedness properties of Hermite pseudo-multipliers and fractional Leibniz rules in such spaces. We also give a new weighted estimate for Hermite multipliers for weights related to Hermite operators.

Downloads

Download data is not yet available.

References

S. Bagchi and R. Garg, On $L^2$-boundedness of pseudo-multipliers associated to the Grushin operator, 2023. arXiv 2111.10098 [math.AP].

S. Bagchi and S. Thangavelu, On Hermite pseudo-multipliers, J. Funct. Anal. 268 no. 1 (2015), 140–170.  DOI  MR  Zbl

B. Bongioanni, A. Cabral, and E. Harboure, Extrapolation for classes of weights related to a family of operators and applications, Potential Anal. 38 no. 4 (2013), 1207–1232.  DOI  MR  Zbl

B. Bongioanni, A. Cabral, and E. Harboure, Schrödinger type singular integrals: weighted estimates for $p=1$, Math. Nachr. 289 no. 11-12 (2016), 1341–1369.  DOI  MR  Zbl

B. Bongioanni, E. Harboure, and O. Salinas, Classes of weights related to Schrödinger operators, J. Math. Anal. Appl. 373 no. 2 (2011), 563–579.  DOI  MR  Zbl

B. Bongioanni and J. L. Torrea, Sobolev spaces associated to the harmonic oscillator, Proc. Indian Acad. Sci. Math. Sci. 116 no. 3 (2006), 337–360.  DOI  MR  Zbl

J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. (4) 14 no. 2 (1981), 209–246.  DOI  MR  Zbl

H.-Q. Bui, T. A. Bui, and X. T. Duong, Weighted Besov and Triebel-Lizorkin spaces associated with operators and applications, Forum Math. Sigma 8 (2020), Paper No. e11, 95 pp.  DOI  MR  Zbl

T. A. Bui, Hermite pseudo-multipliers on new Besov and Triebel-Lizorkin spaces, J. Approx. Theory 252 (2020), Paper No. 105348, 16 pp.  DOI  MR  Zbl

T. A. Bui, T. Q. Bui, and X. T. Duong, Quantitative weighted estimates for some singular integrals related to critical functions, J. Geom. Anal. 31 no. 10 (2021), 10215–10245.  DOI  MR  Zbl

T. A. Bui, T. Q. Bui, and X. T. Duong, Quantitative estimates for square functions with new class of weights, Potential Anal. 57 no. 4 (2022), 545–569.  DOI  MR  Zbl

T. A. Bui and X. T. Duong, Besov and Triebel-Lizorkin spaces associated to Hermite operators, J. Fourier Anal. Appl. 21 no. 2 (2015), 405–448.  DOI  MR  Zbl

T. A. Bui and X. T. Duong, Higher-order Riesz transforms of Hermite operators on new Besov and Triebel-Lizorkin spaces, Constr. Approx. 53 no. 1 (2021), 85–120.  DOI  MR  Zbl

T. A. Bui, J. Li, and F. K. Ly, Weighted embeddings for function spaces associated with Hermite expansions, J. Approx. Theory 264 (2021), Paper No. 105534, 25 pp.  DOI  MR  Zbl

D. Cardona and M. Ruzhansky, Hörmander condition for pseudo-multipliers associated to the harmonic oscillator, 2018. arXiv 1810.01260 [math.FA].

J. Dziubański, Atomic decomposition of $H^p$ spaces associated with some Schrödinger operators, Indiana Univ. Math. J. 47 no. 1 (1998), 75–98.  DOI  MR  Zbl

J. Epperson, Triebel-Lizorkin spaces for Hermite expansions, Studia Math. 114 no. 1 (1995), 87–103.  DOI  MR  Zbl

J. Epperson, Hermite multipliers and pseudo-multipliers, Proc. Amer. Math. Soc. 124 no. 7 (1996), 2061–2068.  DOI  MR  Zbl

J. Epperson, Hermite and Laguerre wave packet expansions, Studia Math. 126 no. 3 (1997), 199–217.  DOI  MR  Zbl

M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 no. 4 (1985), 777–799.  DOI  MR  Zbl

M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 no. 1 (1990), 34–170.  DOI  MR  Zbl

G. Garrigós, E. Harboure, T. Signes, J. L. Torrea, and B. Viviani, A sharp weighted transplantation theorem for Laguerre function expansions, J. Funct. Anal. 244 no. 1 (2007), 247–276.  DOI  MR  Zbl

A. G. Georgiadis and M. Nielsen, Pseudodifferential operators on spaces of distributions associated with non-negative self-adjoint operators, J. Fourier Anal. Appl. 23 no. 2 (2017), 344–378.  DOI  MR  Zbl

S. Gong, B. Ma, and Z. Fu, A continuous characterization of Triebel-Lizorkin spaces associated with Hermite expansions, J. Funct. Spaces (2015), Art. ID 104897, 11 pp.  DOI  MR  Zbl

E. Harboure, J. L. Torrea, and B. E. Viviani, Riesz transforms for Laguerre expansions, Indiana Univ. Math. J. 55 no. 3 (2006), 999–1014.  DOI  MR  Zbl

J. Huang, Hardy-Sobolev spaces associated with Hermite expansions and interpolation, Nonlinear Anal. 157 (2017), 104–122.  DOI  MR  Zbl

A. K. Lerner, Quantitative weighted estimates for the Littlewood-Paley square function and Marcinkiewicz multipliers, Math. Res. Lett. 26 no. 2 (2019), 537–556.  DOI  MR  Zbl

J. Li, R. Rahm, and B. D. Wick, $A_p$ weights and quantitative estimates in the Schrödinger setting, Math. Z. 293 no. 1-2 (2019), 259–283.  DOI  MR  Zbl

F. K. Ly, On the $L^2$ boundedness of pseudo-multipliers for Hermite expansions, 2022. arXiv 2203.09058 [math.CA].

F. K. Ly and V. Naibo, Pseudo-multipliers and smooth molecules on Hermite Besov and Hermite Triebel-Lizorkin spaces, J. Fourier Anal. Appl. 27 no. 3 (2021), Paper No. 57, 59 pp.  DOI  MR  Zbl

F. K. Ly and V. Naibo, Fractional Leibniz rules associated to bilinear Hermite pseudo-multipliers, Int. Math. Res. Not. IMRN 2023 no. 7 (2023), 5401–5437.  DOI  MR  Zbl

G. Mauceri, The Weyl transform and bounded operators on $L^{p}($R$^{n})$, J. Functional Analysis 39 no. 3 (1980), 408–429.  DOI  MR  Zbl

Y. Meyer, Remarques sur un théorème de J.-M. Bony, Rend. Circ. Mat. Palermo (2), suppl. 1 (1981), 1–20.  MR  Zbl

B. Muckenhoupt, Hermite conjugate expansions, Trans. Amer. Math. Soc. 139 (1969), 243–260.  DOI  MR  Zbl

B. Muckenhoupt, Poisson integrals for Hermite and Laguerre expansions, Trans. Amer. Math. Soc. 139 (1969), 231–242.  DOI  MR  Zbl

B. Muckenhoupt and E. M. Stein, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc. 118 (1965), 17–92.  DOI  MR  Zbl

P. Petrushev and Y. Xu, Decomposition of spaces of distributions induced by Hermite expansions, J. Fourier Anal. Appl. 14 no. 3 (2008), 372–414.  DOI  MR  Zbl

T. Runst, Pseudodifferential operators of the “exotic” class $L^0_{1,1}$ in spaces of Besov and Triebel-Lizorkin type, Ann. Global Anal. Geom. 3 no. 1 (1985), 13–28.  DOI  MR  Zbl

E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series 43, Princeton University Press, Princeton, NJ, 1993.  MR  Zbl

K. Stempak and J. L. Torrea, Poisson integrals and Riesz transforms for Hermite function expansions with weights, J. Funct. Anal. 202 no. 2 (2003), 443–472.  DOI  MR  Zbl

S. Thangavelu, Multipliers for Hermite expansions, Rev. Mat. Iberoamericana 3 no. 1 (1987), 1–24.  DOI  MR  Zbl

S. Thangavelu, On regularity of twisted spherical means and special Hermite expansions, Proc. Indian Acad. Sci. Math. Sci. 103 no. 3 (1993), 303–320.  DOI  MR  Zbl

S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Mathematical Notes 42, Princeton University Press, Princeton, NJ, 1993.  MR  Zbl

R. H. Torres, Continuity properties of pseudodifferential operators of type $1,1$, Comm. Partial Differential Equations 15 no. 9 (1990), 1313–1328.  DOI  MR  Zbl

R. H. Torres, Boundedness results for operators with singular kernels on distribution spaces, Mem. Amer. Math. Soc. 90 no. 442 (1991).  DOI  MR  Zbl

J. Zhang and D. Yang, Quantitative boundedness of Littlewood-Paley functions on weighted Lebesgue spaces in the Schrödinger setting, J. Math. Anal. Appl. 484 no. 2 (2020), 123731, 26 pp.  DOI  MR  Zbl

Downloads

Published

2023-09-21