Hermite Besov and Triebel–Lizorkin spaces and applications
DOI:
https://doi.org/10.33044/revuma.4360Abstract
We present an overview of Besov and Triebel–Lizorkin spaces in the Hermite setting and applications on boundedness properties of Hermite pseudo-multipliers and fractional Leibniz rules in such spaces. We also give a new weighted estimate for Hermite multipliers for weights related to Hermite operators.
Downloads
References
S. Bagchi and R. Garg, On $L^2$-boundedness of pseudo-multipliers associated to the Grushin operator, 2023. arXiv 2111.10098 [math.AP].
S. Bagchi and S. Thangavelu, On Hermite pseudo-multipliers, J. Funct. Anal. 268 no. 1 (2015), 140–170. DOI MR Zbl
B. Bongioanni, A. Cabral, and E. Harboure, Extrapolation for classes of weights related to a family of operators and applications, Potential Anal. 38 no. 4 (2013), 1207–1232. DOI MR Zbl
B. Bongioanni, A. Cabral, and E. Harboure, Schrödinger type singular integrals: weighted estimates for $p=1$, Math. Nachr. 289 no. 11-12 (2016), 1341–1369. DOI MR Zbl
B. Bongioanni, E. Harboure, and O. Salinas, Classes of weights related to Schrödinger operators, J. Math. Anal. Appl. 373 no. 2 (2011), 563–579. DOI MR Zbl
B. Bongioanni and J. L. Torrea, Sobolev spaces associated to the harmonic oscillator, Proc. Indian Acad. Sci. Math. Sci. 116 no. 3 (2006), 337–360. DOI MR Zbl
J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. (4) 14 no. 2 (1981), 209–246. DOI MR Zbl
H.-Q. Bui, T. A. Bui, and X. T. Duong, Weighted Besov and Triebel-Lizorkin spaces associated with operators and applications, Forum Math. Sigma 8 (2020), Paper No. e11, 95 pp. DOI MR Zbl
T. A. Bui, Hermite pseudo-multipliers on new Besov and Triebel-Lizorkin spaces, J. Approx. Theory 252 (2020), Paper No. 105348, 16 pp. DOI MR Zbl
T. A. Bui, T. Q. Bui, and X. T. Duong, Quantitative weighted estimates for some singular integrals related to critical functions, J. Geom. Anal. 31 no. 10 (2021), 10215–10245. DOI MR Zbl
T. A. Bui, T. Q. Bui, and X. T. Duong, Quantitative estimates for square functions with new class of weights, Potential Anal. 57 no. 4 (2022), 545–569. DOI MR Zbl
T. A. Bui and X. T. Duong, Besov and Triebel-Lizorkin spaces associated to Hermite operators, J. Fourier Anal. Appl. 21 no. 2 (2015), 405–448. DOI MR Zbl
T. A. Bui and X. T. Duong, Higher-order Riesz transforms of Hermite operators on new Besov and Triebel-Lizorkin spaces, Constr. Approx. 53 no. 1 (2021), 85–120. DOI MR Zbl
T. A. Bui, J. Li, and F. K. Ly, Weighted embeddings for function spaces associated with Hermite expansions, J. Approx. Theory 264 (2021), Paper No. 105534, 25 pp. DOI MR Zbl
D. Cardona and M. Ruzhansky, Hörmander condition for pseudo-multipliers associated to the harmonic oscillator, 2018. arXiv 1810.01260 [math.FA].
J. Dziubański, Atomic decomposition of $H^p$ spaces associated with some Schrödinger operators, Indiana Univ. Math. J. 47 no. 1 (1998), 75–98. DOI MR Zbl
J. Epperson, Triebel-Lizorkin spaces for Hermite expansions, Studia Math. 114 no. 1 (1995), 87–103. DOI MR Zbl
J. Epperson, Hermite multipliers and pseudo-multipliers, Proc. Amer. Math. Soc. 124 no. 7 (1996), 2061–2068. DOI MR Zbl
J. Epperson, Hermite and Laguerre wave packet expansions, Studia Math. 126 no. 3 (1997), 199–217. DOI MR Zbl
M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 no. 4 (1985), 777–799. DOI MR Zbl
M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 no. 1 (1990), 34–170. DOI MR Zbl
G. Garrigós, E. Harboure, T. Signes, J. L. Torrea, and B. Viviani, A sharp weighted transplantation theorem for Laguerre function expansions, J. Funct. Anal. 244 no. 1 (2007), 247–276. DOI MR Zbl
A. G. Georgiadis and M. Nielsen, Pseudodifferential operators on spaces of distributions associated with non-negative self-adjoint operators, J. Fourier Anal. Appl. 23 no. 2 (2017), 344–378. DOI MR Zbl
S. Gong, B. Ma, and Z. Fu, A continuous characterization of Triebel-Lizorkin spaces associated with Hermite expansions, J. Funct. Spaces (2015), Art. ID 104897, 11 pp. DOI MR Zbl
E. Harboure, J. L. Torrea, and B. E. Viviani, Riesz transforms for Laguerre expansions, Indiana Univ. Math. J. 55 no. 3 (2006), 999–1014. DOI MR Zbl
J. Huang, Hardy-Sobolev spaces associated with Hermite expansions and interpolation, Nonlinear Anal. 157 (2017), 104–122. DOI MR Zbl
A. K. Lerner, Quantitative weighted estimates for the Littlewood-Paley square function and Marcinkiewicz multipliers, Math. Res. Lett. 26 no. 2 (2019), 537–556. DOI MR Zbl
J. Li, R. Rahm, and B. D. Wick, $A_p$ weights and quantitative estimates in the Schrödinger setting, Math. Z. 293 no. 1-2 (2019), 259–283. DOI MR Zbl
F. K. Ly, On the $L^2$ boundedness of pseudo-multipliers for Hermite expansions, 2022. arXiv 2203.09058 [math.CA].
F. K. Ly and V. Naibo, Pseudo-multipliers and smooth molecules on Hermite Besov and Hermite Triebel-Lizorkin spaces, J. Fourier Anal. Appl. 27 no. 3 (2021), Paper No. 57, 59 pp. DOI MR Zbl
F. K. Ly and V. Naibo, Fractional Leibniz rules associated to bilinear Hermite pseudo-multipliers, Int. Math. Res. Not. IMRN 2023 no. 7 (2023), 5401–5437. DOI MR Zbl
G. Mauceri, The Weyl transform and bounded operators on $L^{p}($R$^{n})$, J. Functional Analysis 39 no. 3 (1980), 408–429. DOI MR Zbl
Y. Meyer, Remarques sur un théorème de J.-M. Bony, Rend. Circ. Mat. Palermo (2), suppl. 1 (1981), 1–20. MR Zbl
B. Muckenhoupt, Hermite conjugate expansions, Trans. Amer. Math. Soc. 139 (1969), 243–260. DOI MR Zbl
B. Muckenhoupt, Poisson integrals for Hermite and Laguerre expansions, Trans. Amer. Math. Soc. 139 (1969), 231–242. DOI MR Zbl
B. Muckenhoupt and E. M. Stein, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc. 118 (1965), 17–92. DOI MR Zbl
P. Petrushev and Y. Xu, Decomposition of spaces of distributions induced by Hermite expansions, J. Fourier Anal. Appl. 14 no. 3 (2008), 372–414. DOI MR Zbl
T. Runst, Pseudodifferential operators of the “exotic” class $L^0_{1,1}$ in spaces of Besov and Triebel-Lizorkin type, Ann. Global Anal. Geom. 3 no. 1 (1985), 13–28. DOI MR Zbl
E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series 43, Princeton University Press, Princeton, NJ, 1993. MR Zbl
K. Stempak and J. L. Torrea, Poisson integrals and Riesz transforms for Hermite function expansions with weights, J. Funct. Anal. 202 no. 2 (2003), 443–472. DOI MR Zbl
S. Thangavelu, Multipliers for Hermite expansions, Rev. Mat. Iberoamericana 3 no. 1 (1987), 1–24. DOI MR Zbl
S. Thangavelu, On regularity of twisted spherical means and special Hermite expansions, Proc. Indian Acad. Sci. Math. Sci. 103 no. 3 (1993), 303–320. DOI MR Zbl
S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Mathematical Notes 42, Princeton University Press, Princeton, NJ, 1993. MR Zbl
R. H. Torres, Continuity properties of pseudodifferential operators of type $1,1$, Comm. Partial Differential Equations 15 no. 9 (1990), 1313–1328. DOI MR Zbl
R. H. Torres, Boundedness results for operators with singular kernels on distribution spaces, Mem. Amer. Math. Soc. 90 no. 442 (1991). DOI MR Zbl
J. Zhang and D. Yang, Quantitative boundedness of Littlewood-Paley functions on weighted Lebesgue spaces in the Schrödinger setting, J. Math. Anal. Appl. 484 no. 2 (2020), 123731, 26 pp. DOI MR Zbl
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Fu Ken Ly, Virginia Naibo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. The Journal may retract the paper after publication if clear evidence is found that the findings are unreliable as a result of misconduct or honest error.