Avatars of Stein's theorem in the complex setting

Authors

  • Aline Bonami Institut Denis Poisson, Département de Mathématiques, Université d'Orléans, 45067 Orl´eans Cedex 2, France
  • Sandrine Grellier Institut Denis Poisson, Département de Mathématiques, Université d’Orléans, 45067 Orl´eans Cedex 2, France
  • Benoît Sehba Department of Mathematics, University of Ghana, P.O. Box LG 62 Legon, Accra, Ghana

DOI:

https://doi.org/10.33044/revuma.4361

Abstract

In this paper, we establish some variants of Stein's theorem, which states that a non-negative function belongs to the Hardy space $H^1(\mathbb{T})$ if and only if it belongs to $L\log L(\mathbb{T})$. We consider Bergman spaces of holomorphic functions in the upper half plane and develop avatars of Stein's theorem and relative results in this context. We are led to consider weighted Bergman spaces and Bergman spaces of Musielak–Orlicz type. Eventually, we characterize bounded Hankel operators on $A^1(\mathbb{C}_+)$.

Downloads

Download data is not yet available.

References

D. Békollé, Inégalités à poids pour le projecteur de Bergman dans la boule unité de C$^n$, Studia Math. 71 no. 3 (1981/82), 305–323.  DOI  MR  Zbl

D. Békollé, A. Bonami, G. Garrigós, C. Nana, M. M. Peloso, and F. Ricci, Lecture notes on Bergman projectors in tube domains over cones: an analytic and geometric viewpoint, IMHOTEP J. Afr. Math. Pures Appl. 5 (2004), Exp. I, 75 pp.  MR  Zbl

D. Békollé, A. Bonami, and E. Tchoundja, Atomic decomposition and weak factorization for Bergman-Orlicz spaces, Colloq. Math. 160 no. 2 (2020), 223–245.  DOI  MR  Zbl

A. Bonami, S. Grellier, and B. Sehba, Global Stein theorem on Hardy spaces, Anal. Math. (2023).  DOI

A. Bonami, S. Grellier, and L. D. Ky, Paraproducts and products of functions in $BMO(ℝ^n)$ and $ℋ^1(ℝ^n)$ through wavelets, J. Math. Pures Appl. (9) 97 no. 3 (2012), 230–241.  DOI  MR  Zbl

A. Bonami and L. D. Ky, Factorization of some Hardy-type spaces of holomorphic functions, C. R. Math. Acad. Sci. Paris 352 no. 10 (2014), 817–821.  DOI  MR  Zbl

R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in $L^{p}$, in Representation Theorems for Hardy Spaces, Astérisque 77, Soc. Math. France, Paris, 1980, pp. 11–66.  MR  Zbl

S. H. Kang, Some duality of weighted Bergman spaces of the half-plane, Bull. Korean Math. Soc. 42 no. 2 (2005), 387–396.  DOI  MR  Zbl

L. Liu, D. Yang, and W. Yuan, Bilinear decompositions for products of Hardy and Lipschitz spaces on spaces of homogeneous type, Dissertationes Math. 533 (2018), 93 pp.  DOI  MR  Zbl

E. Nakai, Pointwise multipliers on weighted BMO spaces, Studia Math. 125 no. 1 (1997), 35–56.  DOI  MR  Zbl

D. A. Stegenga, Bounded Toeplitz operators on $H^{1}$ and applications of the duality between $H^{1}$ and the functions of bounded mean oscillation, Amer. J. Math. 98 no. 3 (1976), 573–589.  DOI  MR  Zbl

E. M. Stein, Note on the class $L$log$L$, Studia Math. 32 (1969), 305–310.  DOI  MR  Zbl

E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, NJ, 1971.  MR  Zbl

Downloads

Published

2023-09-21