Avatars of Stein's theorem in the complex setting
DOI:
https://doi.org/10.33044/revuma.4361Abstract
In this paper, we establish some variants of Stein's theorem, which states that a non-negative function belongs to the Hardy space $H^1(\mathbb{T})$ if and only if it belongs to $L\log L(\mathbb{T})$. We consider Bergman spaces of holomorphic functions in the upper half plane and develop avatars of Stein's theorem and relative results in this context. We are led to consider weighted Bergman spaces and Bergman spaces of Musielak–Orlicz type. Eventually, we characterize bounded Hankel operators on $A^1(\mathbb{C}_+)$.
Downloads
References
D. Békollé, Inégalités à poids pour le projecteur de Bergman dans la boule unité de C$^n$, Studia Math. 71 no. 3 (1981/82), 305–323. DOI MR Zbl
D. Békollé, A. Bonami, G. Garrigós, C. Nana, M. M. Peloso, and F. Ricci, Lecture notes on Bergman projectors in tube domains over cones: an analytic and geometric viewpoint, IMHOTEP J. Afr. Math. Pures Appl. 5 (2004), Exp. I, 75 pp. MR Zbl
D. Békollé, A. Bonami, and E. Tchoundja, Atomic decomposition and weak factorization for Bergman-Orlicz spaces, Colloq. Math. 160 no. 2 (2020), 223–245. DOI MR Zbl
A. Bonami, S. Grellier, and B. Sehba, Global Stein theorem on Hardy spaces, Anal. Math. (2023). DOI
A. Bonami, S. Grellier, and L. D. Ky, Paraproducts and products of functions in $BMO(ℝ^n)$ and $ℋ^1(ℝ^n)$ through wavelets, J. Math. Pures Appl. (9) 97 no. 3 (2012), 230–241. DOI MR Zbl
A. Bonami and L. D. Ky, Factorization of some Hardy-type spaces of holomorphic functions, C. R. Math. Acad. Sci. Paris 352 no. 10 (2014), 817–821. DOI MR Zbl
R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in $L^{p}$, in Representation Theorems for Hardy Spaces, Astérisque 77, Soc. Math. France, Paris, 1980, pp. 11–66. MR Zbl
S. H. Kang, Some duality of weighted Bergman spaces of the half-plane, Bull. Korean Math. Soc. 42 no. 2 (2005), 387–396. DOI MR Zbl
L. Liu, D. Yang, and W. Yuan, Bilinear decompositions for products of Hardy and Lipschitz spaces on spaces of homogeneous type, Dissertationes Math. 533 (2018), 93 pp. DOI MR Zbl
E. Nakai, Pointwise multipliers on weighted BMO spaces, Studia Math. 125 no. 1 (1997), 35–56. DOI MR Zbl
D. A. Stegenga, Bounded Toeplitz operators on $H^{1}$ and applications of the duality between $H^{1}$ and the functions of bounded mean oscillation, Amer. J. Math. 98 no. 3 (1976), 573–589. DOI MR Zbl
E. M. Stein, Note on the class $L$log$L$, Studia Math. 32 (1969), 305–310. DOI MR Zbl
E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, NJ, 1971. MR Zbl
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Aline Bonami, Sandrine Grellier, Benoît Sehba
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. The Journal may retract the paper after publication if clear evidence is found that the findings are unreliable as a result of misconduct or honest error.